3,045 research outputs found

    The size and shape of the oblong dwarf planet Haumea

    Get PDF
    We use thermal radiometry and visible photometry to constrain the size, shape, and albedo of the large Kuiper belt object Haumea. The correlation between the visible and thermal photometry demonstrates that Haumea's high amplitude and quickly varying optical light curve is indeed due to Haumea's extreme shape, rather than large scale albedo variations. However, the well-sampled high precision visible data we present does require longitudinal surface heterogeneity to account for the shape of lightcurve. The thermal emission from Haumea is consistent with the expected Jacobi ellipsoid shape of a rapidly rotating body in hydrostatic equilibrium. The best Jacobi ellipsoid fit to the visible photometry implies a triaxial ellipsoid with axes of length 1920 x 1540 x 990 km and density 2.6 g cm^-3$, as found by Lellouch et al(2010). While the thermal and visible data cannot uniquely constrain the full non-spherical shape of Haumea, the match between the predicted and measured thermal flux for a dense Jacobi ellipsoid suggests that Haumea is indeed one of the densest objects in the Kuiper belt.Comment: 21 pages, 2 figures, 2 tables -- Accepted for publication in Earth, Moon and Planet

    Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen

    Get PDF
    The survival of all microbes depends upon their ability to respond to environmental challenges. To establish infection, pathogens such as Candida albicans must mount effective stress responses to counter host defences while adapting to dynamic changes in nutrient status within host niches. Studies of C. albicans stress adaptation have generally been performed on glucose-grown cells, leaving the effects of alternative carbon sources upon stress resistance largely unexplored. We have shown that growth on alternative carbon sources, such as lactate, strongly influence the resistance of C. albicans to antifungal drugs, osmotic and cell wall stresses. Similar trends were observed in clinical isolates and other pathogenic Candida species. The increased stress resistance of C. albicans was not dependent on key stress (Hog1) and cell integrity (Mkc1) signalling pathways. Instead, increased stress resistance was promoted by major changes in the architecture and biophysical properties of the cell wall. Glucose- and lactate-grown cells displayed significant differences in cell wall mass, ultrastructure, elasticity and adhesion. Changes in carbon source also altered the virulence of C. albicans in models of systemic candidiasis and vaginitis, confirming the importance of alternative carbon sources within host niches during C. albicans infection

    Antibody responses to a Cryptosporidium parvum rCP15/60 vaccine

    Get PDF
    Cryptosporidium parvum is a zoonotic apicomplexa-protozoan pathogen that causes gastroenteritis and diarrhoea in mammals worldwide. The organism is transmitted by ingestion of oocysts, which are shed in faeces, and completes its lifecycle in a single host.^1^ C. parvum is ubiquitous on dairy operations worldwide and is one of the leading causes of diarrhoea in calves on these farms.^2,3^ Here, for the first time, we describe the antibody response in a large group of cows to a recombinant C. parvum oocyst surface protein (rCP15/60) vaccine and the antibody response in calves fed rCP15/60-immune colostrum produced by these vaccinated cows. Results of recent genotype surveys indicate that calves are the only major reservoir for C. parvum infections in humans.^4^ Human C. parvum infections are particularly prevalent and often fatal in neonates in developing countries and to immunocompromised people, such as AIDs patients.^4^ Drug therapy against cryptosporidiosis is limited and not wholly efficacious in either humans or calves^5^, making development of an effective vaccine of paramount importance. To date, there is no commercially available effective vaccine against C. parvum, although passive immunization utilizing different zoite surface (glyco)proteins has showed promise.^6-9^ All cows we vaccinated produced an antibody response to the rCP15/60 vaccine and the magnitude of response correlated strongly with the subsequent level of antibody in their colostrum. All calves fed rCP15/60-immune colostrum showed a dose-dependent absorption of antibody. Our results demonstrate that vaccination of cows with rCP15/60 successfully induces antibodies against CP15/60 in their serum and colostrum and that these antibodies are then well absorbed when fed to neonatal calves. With further research, this C. parvum vaccine may well be a practical method of conferring passive protection to calves against cryptosporidiosis. Furthermore, a specifically targeted immune-colostrum may be valuable in protection and treatment of immunocompromised human patients with cryptosporidiosis

    When Less is More: Mindfulness Predicts Adaptive Affective Responding to Rejection Via Reduced Prefrontal Recruitment

    Get PDF
    Social rejection is a distressing and painful event that many people must cope with on a frequent basis. Mindfulness—defined here as a mental state of receptive attentiveness to internal and external stimuli as they arise, moment-to-moment—may buffer such social distress. However, little research indicates whether mindful individuals adaptively regulate the distress of rejection—or the neural mechanisms underlying this potential capacity. To fill these gaps in the literature, participants reported their trait mindfulness and then completed a social rejection paradigm (Cyberball) while undergoing functional magnetic resonance imaging. Approximately 1 hour after the rejection incident, participants reported their level of distress during rejection (i.e. social distress). Mindfulness was associated with less distress during rejection. This relation was mediated by lower activation in the left ventrolateral prefrontal cortex during the rejection incident, a brain region reliably associated with the inhibition of negative affect. Mindfulness was also correlated with less functional connectivity between the left ventrolateral prefrontal cortex and the bilateral amygdala and the dorsal anterior cingulate cortex, which play a critical role in the generation of social distress. Mindfulness may relate to effective coping with rejection by not over-activating top-down regulatory mechanisms, potentially resulting in more effective long-term emotion-regulation

    Glucose Promotes Stress Resistance in the Fungal Pathogen \u3ci\u3eCandida albicans\u3c/i\u3e

    Get PDF
    Metabolic adaptation, and in particular the modulation of carbon assimilatory pathways during disease progression, is thought to contribute to the pathogenicity of Candida albicans. Therefore, we have examined the global impact of glucose upon the C. albicans transcriptome, testing the sensitivity of this pathogen to wide-ranging glucose levels (0.01, 0.1, and 1.0%). We show that, like Saccharomyces cerevisiae, C. albicans is exquisitely sensitive to glucose, regulating central metabolic genes even in response to 0.01% glucose. This indicates that glucose concentrations in the bloodstream (approximate range 0.05–0.1%) have a significant impact upon C. albicans gene regulation. However, in contrast to S. cerevisiae where glucose down-regulates stress responses, some stress genes were induced by glucose in C. albicans. This was reflected in elevated resistance to oxidative and cationic stresses and resistance to an azole antifungal agent. Cap1 and Hog1 probably mediate glucose-enhanced resistance to oxidative stress, but neither is essential for this effect. However, Hog1 is phosphorylated in response to glucose and is essential for glucose-enhanced resistance to cationic stress. The data suggest that, upon entering the bloodstream, C. albicans cells respond to glucose increasing their resistance to the oxidative and cationic stresses central to the armory of immunoprotective phagocytic cells

    GEOMAGIA50.v3: 1. general structure and modifications to the archeological and volcanic database

    Get PDF
    Background: GEOMAGIA50.v3 is a comprehensive online database providing access to published paleomagnetic, rock magnetic, and chronological data from a variety of materials that record Earth’s magnetic field over the past 50 ka.Findings: Since its original release in 2006, the structure and function of the database have been updated and a significant number of data have been added. Notable modifications are the following: (1) the inclusion of additional intensity, directional and metadata from archeological and volcanic materials and an improved documentation of radiocarbon dates; (2) a new data model to accommodate paleomagnetic, rock magnetic, and chronological data from lake and marine sediments; (3) a refinement of the geographic constraints in the archeomagnetic/volcanic query allowing selection of particular locations; (4) more flexible methodological and statistical constraints in the archeomagnetic/volcanic query; (5) the calculation of predictions of the Holocene geomagnetic field from a series of time varying global field models; (6) searchable reference lists; and (7) an updated web interface. This paper describes general modifications to the database and specific aspects of the archeomagnetic and volcanic database. The reader is referred to a companion publication for a description of the sediment database.Conclusions: The archeomagnetic and volcanic part of GEOMAGIA50.v3 currently contains 14,645 data (declination, inclination, and paleointensity) from 461 studies published between 1959 and 2014. We review the paleomagnetic methods used to obtain these data and discuss applications of the data within the database. The database continues to expand as legacy data are added and new studies published. The web-based interface can be found at http://geomagia.gfz-potsdam.de webcite

    Glucose Promotes Stress Resistance in the Fungal Pathogen \u3ci\u3eCandida albicans\u3c/i\u3e

    Get PDF
    Metabolic adaptation, and in particular the modulation of carbon assimilatory pathways during disease progression, is thought to contribute to the pathogenicity of Candida albicans. Therefore, we have examined the global impact of glucose upon the C. albicans transcriptome, testing the sensitivity of this pathogen to wide-ranging glucose levels (0.01, 0.1, and 1.0%). We show that, like Saccharomyces cerevisiae, C. albicans is exquisitely sensitive to glucose, regulating central metabolic genes even in response to 0.01% glucose. This indicates that glucose concentrations in the bloodstream (approximate range 0.05–0.1%) have a significant impact upon C. albicans gene regulation. However, in contrast to S. cerevisiae where glucose down-regulates stress responses, some stress genes were induced by glucose in C. albicans. This was reflected in elevated resistance to oxidative and cationic stresses and resistance to an azole antifungal agent. Cap1 and Hog1 probably mediate glucose-enhanced resistance to oxidative stress, but neither is essential for this effect. However, Hog1 is phosphorylated in response to glucose and is essential for glucose-enhanced resistance to cationic stress. The data suggest that, upon entering the bloodstream, C. albicans cells respond to glucose increasing their resistance to the oxidative and cationic stresses central to the armory of immunoprotective phagocytic cells
    corecore