69 research outputs found
Migratory monarchs that encounter resident monarchs show life‐history differences and higher rates of parasite infection
Environmental change induces some wildlife populations to shift from migratory to resident behaviours. Newly formed resident populations could influence the health and behaviour of remaining migrants. We investigated migrant–resident interactions among monarch butterflies and consequences for life history and parasitism. Eastern North American monarchs migrate annually to Mexico, but some now breed year‐round on exotic milkweed in the southern US and experience high infection prevalence of protozoan parasites. Using stable isotopes (δ2H, δ13C) and cardenolide profiles to estimate natal origins, we show that migrant and resident monarchs overlap during fall and spring migration. Migrants at sites with residents were 13 times more likely to have infections and three times more likely to be reproductive (outside normal breeding season) compared to other migrants. Exotic milkweed might either attract migrants that are already infected or reproductive, or alternatively, induce these states. Increased migrant–resident interactions could affect monarch parasitism, migratory success and long‐term conservation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146381/1/ele13144_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146381/2/ele13144.pd
Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance
We have made a first measurement of the lepton momentum spectrum in a sample
of events enriched in neutral B's through a partial reconstruction of B0 -->
D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the
Upsilon(4S) resonance by the CLEO II detector, is compared directly to the
inclusive lepton spectrum from all Upsilon(4S) events in the same data set.
These two spectra are consistent with having the same shape above 1.5 GeV/c.
From the two spectra and two other CLEO measurements, we obtain the B0 and B+
semileptonic branching fractions, b0 and b+, their ratio, and the production
ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950
(+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57
+- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes,
tau+/tau0.Comment: 14 page, postscript file also available at
http://w4.lns.cornell.edu/public/CLN
Studies of the Cabbibo-Suppressed Decays and
Using 4.8 fb of data taken with the CLEO II detector, the branching
fraction for the Cabibbo-suppressed decay measured
relative to the Cabibbo favored decay is found to be
. Using and from unitarity
constraints, we determine We
also present a 90% confidence level upper limit for the branching ratio of the
decay relative to that for of
1.5.Comment: 10 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Evolutionarily stable investment in secondary defences
Previous workers have suggested that the evolutionarily stable strategy (ESS) for investment in antipredator defences, such as toxins, will critically depend on the nature of expression of the defence. Specifically, it has been suggested that if the different levels of a defence are best described as a continuous variable, then this will lead to pure ESSs with all individuals in a population adopting similar defence levels; whereas defences that can only take on discrete levels will lead to mixed ESSs (featuring variation in defence within the population).
Our principal aim is to determine the validity of these viewpoints, and examine how the pure and mixed strategies predicted by the two types of defences can be reconciled with practical and philosophical difficulties in defining any given defence unambiguously as continuous or discrete.
We present the first model of a continuously varying defence that is solved explicitly for evolutionarily stable strategies.
We are able to demonstrate analytically, that the model always has a unique ESS, which is always pure. This strategy may involve all members of the population adopting no defence, or all members of the population making the same non-zero investment in defence.
We then modify our model to restrict the defence to a number of discrete levels and demonstrate that the unique ESS in this case can be either pure or mixed. We further argue that the mixed ESS can be a combination of no more than two defence levels, and the two levels in a mixed ESS must be nearest neighbour levels in an ordered list of the levels that the defence can take.
This, in turn, means that the mixed ESS will be practically identical to a pure ESS if the discrete defence is fine-grained
- …