6,488 research outputs found

    Distribution of parametric conductance derivatives of a quantum dot

    Get PDF
    The conductance G of a quantum dot with single-mode ballistic point contacts depends sensitively on external parameters X, such as gate voltage and magnetic field. We calculate the joint distribution of G and dG/dX by relating it to the distribution of the Wigner-Smith time-delay matrix of a chaotic system. The distribution of dG/dX has a singularity at zero and algebraic tails. While G and dG/dX are correlated, the ratio of dG/dX and G(1G)\sqrt{G(1-G)} is independent of G. Coulomb interactions change the distribution of dG/dX, by inducing a transition from the grand-canonical to the canonical ensemble. All these predictions can be tested in semiconductor microstructures or microwave cavities.Comment: 4 pages, RevTeX, 3 figure

    Nonequilibrium theory of Coulomb blockade in open quantum dots

    Full text link
    We develop a non-equilibrium theory to describe weak Coulomb blockade effects in open quantum dots. Working within the bosonized description of electrons in the point contacts, we expose deficiencies in earlier applications of this method, and address them using a 1/N expansion in the inverse number of channels. At leading order this yields the self-consistent potential for the charging interaction. Coulomb blockade effects arise as quantum corrections to transport at the next order. Our approach unifies the phase functional and bosonization approaches to the problem, as well as providing a simple picture for the conductance corrections in terms of renormalization of the dot's elastic scattering matrix, which is obtained also by elementary perturbation theory. For the case of ideal contacts, a symmetry argument immediately allows us to conclude that interactions give no signature in the averaged conductance. Non-equilibrium applications to the pumped current in a quantum pump are worked out in detail.Comment: Published versio

    Voltage-probe and imaginary potential models for dephasing in a chaotic quantum dot

    Full text link
    We compare two widely used models for dephasing in a chaotic quantum dot: The introduction of a fictitious voltage probe into the scattering matrix and the addition of an imaginary potential to the Hamiltonian. We identify the limit in which the two models are equivalent and compute the distribution of the conductance in that limit. Our analysis explains why previous treatments of dephasing gave different results. The distribution remains non-Gaussian for strong dephasing if the coupling of the quantum dot to the electron reservoirs is via ballistic single-mode point contacts, but becomes Gaussian if the coupling is via tunneling contacts.Comment: 9 pages, RevTeX, 6 figures. Mistake in Eq. (35) correcte

    Sediment Characterization of Coastal Lagoons and Bays, Virginian Province

    Get PDF
    Sediment characterizations for the following estuaries and rivers: Chesapeake Bay Potomac River Rappahannock River York River James River Chester River Choptank Rive

    ADULT MOVEMENT AND LARVAL DISPERSAL OF ARGYROZONA ARGYROZONA (PISCES: SPARIDAE) FROM A TEMPERATE MARINE PROTECTED AREA

    Get PDF
    Adult emigration and larval dispersal of carpenter Argyrozona argyrozona from the Tsitsikamma National Park (TNP), South Africa, were investigated using mark-recapture data and Acoustic Doppler Current Profiler measurements of currents. Tagging data showed that adult carpenter were mainly resident, with a small proportion (7&#37) leaving the TNP in both easterly and westerly directions. There was no relationship between fish movement patterns and fish size or time-at-liberty. Current patterns suggest that eggs and larvae spawned within the TNP are mainly transported eastwards towards established nursery grounds; the median estimated distance moved was 299 km (range 42–561 km) in 30 days (time to flexion). Given this pattern of ichthyoplankton dispersal, together with the fact that adult carpenter within the TNP displayed a high degree of residency and that they are much more abundant than in adjacent fishing grounds (catch per unit effort being 23 times greater), it appears that the TNP protects a viable carpenter spawner population capable of seeding adjacent fishing grounds

    Finite size effects and localization properties of disordered quantum wires with chiral symmetry

    Full text link
    Finite size effects in the localization properties of disordered quantum wires are analyzed through conductance calculations. Disorder is induced by introducing vacancies at random positions in the wire and thus preserving the chiral symmetry. For quasi one-dimensional geometries and low concentration of vacancies, an exponential decay of the mean conductance with the wire length is obtained even at the center of the energy band. For wide wires, finite size effects cause the conductance to decay following a non-pure exponential law. We propose an analytical formula for the mean conductance that reproduces accurately the numerical data for both geometries. However, when the concentration of vacancies increases above a critical value, a transition towards the suppression of the conductance occurs. This is a signature of the presence of ultra-localized states trapped in finite regions of the sample.Comment: 5 figures, revtex

    Effect of inelastic scattering on parametric pumping

    Full text link
    Pumping of charge in phase-coherent mesoscopic systems due to the out-of-phase modulation of two parameters has recently found considerable interest. We investigate the effect of inelastic processes on the adiabatically pumped current through a two terminal mesoscopic sample. We find that the loss of coherence does not suppress the pumped charge but rather an additional physical mechanism for an incoherent pump effect comes into play. In a fully phase incoherent system the pump effect is similar to a rectification effect
    corecore