119 research outputs found

    Synchronizing Sequencing Software to a Live Drummer

    Get PDF
    Copyright 2013 Massachusetts Institute of Technology. MIT allows authors to archive published versions of their articles after an embargo period. The article is available at

    How to follow the guidelines, when the appropriate fluid is missing?

    Get PDF
    Intravenous maintenance fluid therapy (IV-MFT) is probably the most prescribed drug in paediatric hospital care. Recently paediatric societies have produced evidence-based practice guidelines that recommend the use of balanced isotonic fluid when prescribing IV-MFT in both acute and critical paediatric care. Unfortunately, the applicability of these guidelines could be called into question when a ready-to-use glucose-containing balanced isotonic fluid is not available. The main objective of this study was to describe the availability of glucose-containing balanced isotonic fluids in European and Middle Eastern paediatric acute and critical care settings. This work is an ancillary study of the survey dedicated to IV-MFT practices in the paediatric acute and critical care settings in Europe and Middle East, a cross-sectional electronic 27-item survey, emailed in April–May 2021 to paediatric critical care physicians across 34 European and Middle East countries. The survey was developed by an expert multi-professional panel within the European Society of Peadiatric and Neonatal Intensive Care (ESPNIC). Balanced isotonic fluid with glucose 5% was available for only 32/153 (21%) responders. Balanced isotonic fluid with glucose 5% was consistently available in the UK (90%) but not available in France, Greece, The Netherlands and Turkey.Β  Β  Conclusion: Ready-to-use isotonic balanced IV solutions containing glucose in sufficient amount exist but are inconsistently available throughout Europe. National and European Medication Safety Incentives should guarantee the availability of the most appropriate and safest IV-MFT solution for all children. What is Known:β€’ Intravenous maintenance fluid therapy (IV-MFT) is probably the most prescribed drug in paediatric hospital care.β€’ Balanced isotonic fluid is recommended when prescribing IV-MFT in both acute and critical paediatric care. What is New:β€’ Balanced isotonic fluid with glucose 5% is available for less than 25% of the prescribers in Europe and the Middle East.Β Availability of balanced isotonic fluid with glucose 5% varies from one country to another but can also be inconsistent within the same country.β€’ Clinicians who have access to a ready-to-use balanced isotonic fluid with glucose 5% are more likely to consider its use than clinicians who do not have access to such an IV solution

    ESPNIC clinical practice guidelines: intravenous maintenance fluid therapy in acute and critically ill children- a systematic review and meta-analysis

    Full text link
    PURPOSE Intravenous maintenance fluid therapy (IV-MFT) prescribing in acute and critically ill children is very variable among pediatric health care professionals. In order to provide up to date IV-MFT guidelines, the European Society of Pediatric and Neonatal Intensive Care (ESPNIC) undertook a systematic review to answer the following five main questions about IV-MFT: (i) the indications for use (ii) the role of isotonic fluid (iii) the role of balanced solutions (iv) IV fluid composition (calcium, magnesium, potassium, glucose and micronutrients) and v) and the optimal amount of fluid. METHODS A multidisciplinary expert group within ESPNIC conducted this systematic review using the Scottish Intercollegiate Guidelines Network (SIGN) grading method. Five databases were searched for studies that answered these questions, in acute and critically children (from 37Β weeks gestational age to 18Β years), published until November 2020. The quality of evidence and risk of bias were assessed, and meta-analyses were undertaken when appropriate. A series of recommendations was derived and voted on by the expert group to achieve consensus through two voting rounds. RESULTS 56 papers met the inclusion criteria, and 16 recommendations were produced. Outcome reporting was inconsistent among studies. Recommendations generated were based on a heterogeneous level of evidence, but consensus within the expert group was high. "Strong consensus" was reached for 11/16 (69%) and "consensus" for 5/16 (31%) of the recommendations. CONCLUSIONS Key recommendations are to use isotonic balanced solutions providing glucose to restrict IV-MFT infusion volumes in most hospitalized children and to regularly monitor plasma electrolyte levels, serum glucose and fluid balance

    Antibodies Against Anthrax: Mechanisms of Action and Clinical Applications

    Get PDF
    B. anthracis is a bioweapon of primary importance and its pathogenicity depends on its lethal and edema toxins, which belong to the A-B model of bacterial toxins, and on its capsule. These toxins are secreted early in the course of the anthrax disease and for this reason antibiotics must be administered early, in addition to other limitations. Antibodies (Abs) may however neutralize those toxins and target this capsule to improve anthrax treatment, and many Abs have been developed in that perspective. These Abs act at various steps of the cell intoxication and their mechanisms of action are detailed in the present review, presented in correlation with structural and functional data. The potential for clinical application is discussed for Abs targeting each step of entry, with four of these molecules already advancing to clinical trials. Paradoxically, certain Abs may also enhance the lethal toxin activity and this aspect will also be presented. The unique paradigm of Abs neutralizing anthrax toxins thus exemplifies how they may act to neutralize A-B toxins and, more generally, be active against infectious diseases

    Exosome-Related Multi-Pass Transmembrane Protein TSAP6 Is a Target of Rhomboid Protease RHBDD1-Induced Proteolysis

    Get PDF
    We have previously reported that rhomboid domain containing 1 (RHBDD1), a mammalian rhomboid protease highly expressed in the testis, can cleave the Bcl-2 protein Bik. In this study, we identified a multi-pass transmembrane protein, tumor suppressor activated pathway-6 (TSAP6) as a potential substrate of RHBDD1. RHBDD1 was found to induce the proteolysis of TSAP6 in a dose- and activity-dependent manner. The cleavage of TSAP6 was not restricted to its glycosylated form and occurred in three different regions. In addition, mass spectrometry and mutagenesis analyses both indicated that the major cleavage site laid in the C-terminal of the third transmembrane domain of TSAP6. A somatic cell knock-in approach was used to genetically inactivate the endogenous RHBDD1 in HCT116 and RKO colon cancer cells. Exosome secretion was significantly elevated when RHBDD1 was inactivated in the two cells lines. The increased exosome secretion was verfied through the detection of certain exosomal components, including Tsg101, Tf-R, FasL and Trail. In addition, the elevation of exosome secretion by RHBDD1 inactivation was reduced when TSAP6 was knocked down, indicating that the role of RHBDD1 in regulating exosomal trafficking is very likely to be TSAP6-dependent. We found that the increase in FasL and Trail increased exosome-induced apoptosis in Jurkat cells. Taken together, our findings suggest that RHBDD1 is involved in the regulation of a nonclassical exosomal secretion pathway through the restriction of TSAP6

    Mechanisms of NK Cell-Macrophage Bacillus anthracis Crosstalk: A Balance between Stimulation by Spores and Differential Disruption by Toxins

    Get PDF
    NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-Ξ³ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-Ξ³ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-Ξ³ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-Ξ³ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-Ξ³ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms
    • …
    corecore