13 research outputs found

    Germinal center B cells recognize antigen through a specialized immune synapse architecture

    No full text
    B cell activation is regulated by B cell antigen receptor (BCR) signaling and antigen internalization in immune synapses. Using large-scale imaging across B cell subsets, we show that in contrast to naive and memory B cells, which gathered antigen towards the synapse center before internalization, germinal center (GC) B cells extracted antigen by a distinct pathway using small peripheral clusters. Both naive and GC B cell synapses required proximal BCR signaling, but GC cells signaled less through the protein kinase C-β (PKC-β)–NF-κB pathway and produced stronger tugging forces on the BCR, thereby more stringently regulating antigen binding. Consequently, GC B cells extracted antigen with better affinity discrimination than naive B cells, suggesting that specialized biomechanical patterns in B cell synapses regulate T-cell dependent selection of high-affinity B cells in GCs

    Citizen science breathes new life into participatory agricultural research : A review

    Get PDF
    Participatory research can improve the efficiency, effectiveness, and scope of research processes, and foster social inclusion, empowerment and sustainability. Yet despite four decades of agricultural research institutions exploring and developing methods for participatory research, it has never become mainstream in the agricultural technology development cycle. Citizen science promises an innovative approach to participation in research, using the unique facilities of new digital technologies, but its potential in agricultural research participation has not been systematically probed. To this end, we conducted a critical literature review. We found that citizen science opens up four opportunities for creatively reshaping research: i) new possibilities for interdisciplinary collaboration, ii) rethinking configurations of socio-computational systems, iii) research on democratization of science more broadly, and iv) new accountabilities. Citizen science also brings a fresh perspective on the barriers to institutionalizing participation in the agricultural sciences. Specifically, we show how citizen science can reconfigure cost-motivation-accountability combinations using digital tools, open up a larger conceptual space of experimentation, and stimulate new collaborations. With appropriate and persistent institutional support and investment, citizen science can therefore have a lasting impact on how agricultural science engages with farming communities and wider society, and more fully realize the promises of participation

    Quantitative proteomic analysis of host—pathogen interactions: a study of Acinetobacter baumannii responses to host airways

    No full text
    BACKGROUND: Acinetobacter baumannii is a major health problem. The most common infection caused by A. baumannii is hospital acquired pneumonia, and the associated mortality rate is approximately 50 %. Neither in vivo nor ex vivo expression profiling has been performed at the proteomic or transcriptomic level for pneumonia caused by A. baumannii. In this study, we characterized the proteome of A. baumannii under conditions that simulate those found in the airways, to gain some insight into how A. baumannii adapts to the host and to improve knowledge about the pathogenesis and virulence of this bacterium. A clinical strain of A. baumannii was grown under different conditions: in the presence of bronchoalveolar lavage fluid from infected rats, of RAW 264.7 cells to simulate conditions in the respiratory tract and in control conditions. We used iTRAQ labelling and LC-MALDI-TOF/TOF to investigate how A. baumannii responds on exposure to macrophages/BALF. RESULTS: 179 proteins showed differential expression. In both models, proteins involved in the following processes were over-expressed: (i) pathogenesis and virulence (OmpA, YjjK); (ii) cell wall/membrane/envelope biogenesis (MurC); (iii) energy production and conversion (acetyl-CoA hydrolase); and (iv) translation (50S ribosomal protein L9). Proteins involved in the following were under-expressed: (i) lipid metabolism (short-chain dehydrogenase); (ii) amino acid metabolism and transport (aspartate aminotransferase); (iii) unknown function (DNA-binding protein); and (iv) inorganic ion transport and metabolism (hydroperoxidase). CONCLUSIONS: We observed alterations in cell wall synthesis and identified 2 upregulated virulence-associated proteins with >15 peptides/protein in both ex vivo models (OmpA and YjjK), suggesting that these proteins are fundamental for pathogenesis and virulence in the airways. This study is the first comprehensive overview of the ex vivo proteome of A. baumannii and is an important step towards identification of diagnostic biomarkers, novel drug targets and potential vaccine candidates in the fight against pneumonia caused by A. baumannii. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1608-z) contains supplementary material, which is available to authorized users

    Host race formation in the Acari

    No full text
    Host race formation generates diversity within species and may even lead to speciation. This phenomenon could be particularly prevalent in the Acari due to the often intimate interaction these species have with their hosts. In this review, we explore the process of host race formation, whether it is likely to occur in this group and what features may favour its evolution. Although few studies are currently available and tend to be biased toward two model species, results suggest that host races are indeed common in this group, and more likely to occur when hosts are long-lived. We discuss future directions for research on host-associated adaptations in this group of organisms and the potential relevance of host race formation for the biodiversity of mites and ticks
    corecore