2,022 research outputs found

    Fast cerebellar reflex circuitry requires synaptic vesicle priming by Munc13-3

    No full text
    Munc13-3 is a member of the Munc13 family of synaptic vesicle priming proteins and mainly expressed in cerebellar neurons. Munc13-3 null mutant (Munc13-3(−/−)) mice show decreased synaptic release probability at parallel fiber to Purkinje cell, granule cell to Golgi cell, and granule cell to basket cell synapses and exhibit a motor learning deficit at highest rotarod speeds. Since we detected Munc13-3 immunoreactivity in the dentate gyrus, as reported here for the first time, and current studies indicated a crucial role for the cerebellum in hippocampus-dependent spatial memory, we systematically investigated Munc13-3(−/−) mice versus wild-type littermates of both genders with respect to hippocampus-related cognition and a range of basic behaviors, including tests for anxiety, sensory functions, motor performance and balance, sensorimotor gating, social interaction and competence, and repetitive and compulsive behaviors. Neither basic behavior nor hippocampus-dependent cognitive performance, evaluated by Morris water maze, hole board working and reference memory, IntelliCage-based place learning including multiple reversals, and fear conditioning, showed any difference between genotypes. However, consistent with a disturbed cerebellar reflex circuitry, a reliable reduction in the acoustic startle response in both male and female Munc13-3(−/−) mice was found. To conclude, complete deletion of Munc13-3 leads to a robust decrease in the acoustic startle response. This readout of a fast cerebellar reflex circuitry obviously requires synaptic vesicle priming by Munc13-3 for full functionality, in contrast to other behavioral or cognitive features, where a nearly perfect compensation of Munc13-3 deficiency by related synaptic proteins has to be assumed

    Photoswitchable diacylglycerols enable optical control of protein kinase C.

    Get PDF
    Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling

    De Novo Missense Variants in SLC32A1 Cause a Developmental and Epileptic Encephalopathy Due to Impaired GABAergic Neurotransmission

    Get PDF
    Objective:Rare inherited missense variants inSLC32A1, the gene that encodes the vesicular gamma-aminobutyric acid(GABA) transporter, have recently been shown to cause genetic epilepsy with febrile seizures plus. We aimed to clarifyif de novo missense variants inSLC32A1can also cause epilepsy with impaired neurodevelopment.Methods:Using exome sequencing, we identified four individuals with a developmental and epileptic encephalopathyand de novo missense variants inSLC32A1. To assess causality, we performed functional evaluation of the identifiedvariants in a murine neuronal cell culture model.Results:The main phenotype comprises moderate-to-severe intellectual disability, infantile-onset epilepsy within thefirst 18 months of life, and a choreiform, dystonic, or dyskinetic movement disorder. In silico modeling and functionalanalyses reveal that three of these variants, which are located in helices that line the putative GABA transport pathway,result in reduced quantal size, consistent with impairedfilling of synaptic vesicles with GABA. The fourth variant,located in the vesicular gamma-aminobutyric acid N-terminus, does not affect quantal size, but increases presynapticrelease probability, leading to more severe synaptic depression during high-frequency stimulation. Thus, variants invesicular gamma-aminobutyric acid can impair GABAergic neurotransmission through at least two mechanisms, byaffecting synaptic vesiclefilling and by altering synaptic short-term plasticity.Interpretation:This work establishes de novo missense variants inSLC32A1as a novel cause of a developmental andepileptic encephalopathy

    Rationale and design of decision: a double-blind, randomized, placebo-controlled phase III trial evaluating the efficacy and safety of sorafenib in patients with locally advanced or metastatic radioactive iodine (RAI)-refractory, differentiated thyroid cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of thyroid cancer and the number of patients who die from this disease are increasing globally. Differentiated thyroid cancer (DTC) is the histologic subtype present in most patients and is primarily responsible for the increased overall incidence of thyroid cancer. Sorafenib is a multikinase inhibitor that targets several molecular signals believed to be involved in the pathogenesis of thyroid cancer, including those implicated in DTC. In phase II studies of patients with DTC, sorafenib treatment has yielded a median progression-free survival (PFS) of 58 to 84 weeks and disease control rates of 59% to 100%. The DECISION trial was designed to assess the ability of sorafenib to improve PFS in patients with locally advanced or metastatic, radioactive iodine (RAI)-refractory DTC.</p> <p>Methods/design</p> <p>DECISION is a multicenter, double-blind, randomized, placebo-controlled phase III study in patients with locally advanced/metastatic RAI<b>-</b>refractory DTC. Study treatment will continue until radiographically documented disease progression, unacceptable toxicity, noncompliance, or withdrawal of consent. Efficacy will be evaluated every 56 days (2 cycles), whereas safety will be evaluated every 28 days (1 cycle) for the first 8 months and every 56 days thereafter. Following disease progression, patients may continue or start sorafenib, depending on whether they were randomized to receive sorafenib or placebo, at investigator discretion. Patients originally randomized to receive sorafenib will be followed up every 3 months for overall survival (OS); patients originally randomized to receive placebo will be followed up every month for 8 months after cross-over to sorafenib. The duration of the trial is expected to be 30 months from the time the first patient is randomized until the planned number of PFS events is attained. The primary endpoint is PFS; secondary endpoints include OS, time to disease progression, disease control rate, response rate, duration of response, safety, and pharmacokinetic analysis.</p> <p>Discussion</p> <p>The DECISION study has been designed to test whether sorafenib improves PFS in patients with locally advanced or metastatic RAI-refractory DTC.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00984282">NCT00984282</a>; EudraCT: 2009-012007-25.</p

    Evidence for proton acceleration up to TeV energies based on VERITAS and Fermi-LAT observations of the Cas A SNR

    Full text link
    We present a study of γ\gamma-ray emission from the core-collapse supernova remnant Cas~A in the energy range from 0.1GeV to 10TeV. We used 65 hours of VERITAS data to cover 200 GeV - 10 TeV, and 10.8 years of \textit{Fermi}-LAT data to cover 0.1-500 GeV. The spectral analysis of \textit{Fermi}-LAT data shows a significant spectral curvature around 1.3±0.4stat1.3 \pm 0.4_{stat} GeV that is consistent with the expected spectrum from pion decay. Above this energy, the joint spectrum from \textit{Fermi}-LAT and VERITAS deviates significantly from a simple power-law, and is best described by a power-law with spectral index of 2.17±0.02stat2.17\pm 0.02_{stat} with a cut-off energy of 2.3±0.5stat2.3 \pm 0.5_{stat} TeV. These results, along with radio, X-ray and γ\gamma-ray data, are interpreted in the context of leptonic and hadronic models. Assuming a one-zone model, we exclude a purely leptonic scenario and conclude that proton acceleration up to at least 6 TeV is required to explain the observed γ\gamma-ray spectrum. From modeling of the entire multi-wavelength spectrum, a minimum magnetic field inside the remnant of Bmin150μGB_{\mathrm{min}}\approx150\,\mathrm{\mu G} is deduced.Comment: 33 pages, 9 Figures, 6 Table

    Direct measurement of stellar angular diameters by the VERITAS Cherenkov Telescopes

    Full text link
    The angular size of a star is a critical factor in determining its basic properties. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements. Here we report two occultations of stars observed by the VERITAS Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars' angular diameter at the 0.1\leq0.1 milliarcsecond scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can be biased for stars with ambiguous stellar classifications.Comment: Accepted for publication in Nature Astronom

    Discovery of very-high-energy emission from RGB J2243+203 and derivation of its redshift upper limit

    Full text link
    Very-high-energy (VHE; >> 100 GeV) gamma-ray emission from the blazar RGB J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the period between 21 and 24 December 2014. The VERITAS energy spectrum from this source can be fit by a power law with a photon index of 4.6±0.54.6 \pm 0.5, and a flux normalization at 0.15 TeV of (6.3±1.1)×1010 cm2s1TeV1(6.3 \pm 1.1) \times 10^{-10} ~ \textrm{cm}^{-2} \textrm{s}^{-1} \textrm{TeV}^{-1}. The integrated \textit{Fermi}-LAT flux from 1 GeV to 100 GeV during the VERITAS detection is (4.1±0.8)×10-8 cm-2s-1(4.1 \pm 0.8) \times 10^{\textrm{-8}} ~\textrm{cm}^{\textrm{-2}}\textrm{s}^{\textrm{-1}}, which is an order of magnitude larger than the four-year-averaged flux in the same energy range reported in the 3FGL catalog, (4.0±0.1×10-9 cm-2s-14.0 \pm 0.1 \times 10^{\textrm{-9}} ~ \textrm{cm}^{\textrm{-2}}\textrm{s}^{\textrm{-1}}). The detection with VERITAS triggered observations in the X-ray band with the \textit{Swift}-XRT. However, due to scheduling constraints \textit{Swift}-XRT observations were performed 67 hours after the VERITAS detection, not simultaneous with the VERITAS observations. The observed X-ray energy spectrum between 2 keV and 10 keV can be fitted with a power-law with a spectral index of 2.7±0.22.7 \pm 0.2, and the integrated photon flux in the same energy band is (3.6±0.6)×1013 cm2s1(3.6 \pm 0.6) \times 10^{-13} ~\textrm{cm}^{-2} \textrm{s}^{-1}. EBL model-dependent upper limits of the blazar redshift have been derived. Depending on the EBL model used, the upper limit varies in the range from z < 0.9<~0.9 to z < 1.1<~1.1

    Measurement of Cosmic-ray Electrons at TeV Energies by VERITAS

    Full text link
    Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique probe of our local Galactic neighborhood. CREs lose energy rapidly via synchrotron radiation and inverse-Compton scattering processes while propagating within the Galaxy and these losses limit their propagation distance. For electrons with TeV energies, the limit is on the order of a kiloparsec. Within that distance there are only a few known astrophysical objects capable of accelerating electrons to such high energies. It is also possible that the CREs are the products of the annihilation or decay of heavy dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov telescopes in southern Arizona, USA, is primarily utilized for gamma-ray astronomy, but also simultaneously collects CREs during all observations. We describe our methods of identifying CREs in VERITAS data and present an energy spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300 hours of observations. A single power-law fit is ruled out in VERITAS data. We find that the spectrum of CREs is consistent with a broken power law, with a break energy at 710 ±\pm 40stat_{stat} ±\pm 140syst_{syst} GeV.Comment: 17 pages, 2 figures, accepted for publication in PR
    corecore