950 research outputs found
The Frequency Dependence of Critical-velocity Behavior in Oscillatory Flow of Superfluid Helium-4 Through a 2-micrometer by 2-micrometer Aperture in a Thin Foil
The critical-velocity behavior of oscillatory superfluid Helium-4 flow
through a 2-micrometer by 2-micrometer aperture in a 0.1-micrometer-thick foil
has been studied from 0.36 K to 2.10 K at frequencies from less than 50 Hz up
to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during
which the frequency remained below 400 Hz, the critical velocity was a
nearly-linearly decreasing function of increasing temperature throughout the
region of temperature studied. In runs at the lowest frequencies, isolated 2 Pi
phase slips could be observed at the onset of dissipation. In runs with
frequencies higher than 400 Hz, downward curvature was observed in the decrease
of critical velocity with increasing temperature. In addition, above 500 Hz an
alteration in supercritical behavior was seen at the lower temperatures,
involving the appearance of large energy-loss events. These irregular events
typically lasted a few tens of half-cycles of oscillation and could involve
hundreds of times more energy loss than would have occurred in a single
complete 2 Pi phase slip at maximum flow. The temperatures at which this
altered behavior was observed rose with frequency, from ~ 0.6 K and below, at
500 Hz, to ~ 1.0 K and below, at 1880 Hz.Comment: 35 pages, 13 figures, prequel to cond-mat/050203
FERMION ZERO MODES AND BLACK-HOLE HYPERMULTIPLETS WITH RIGID SUPERSYMMETRY
The gravitini zero modes riding on top of the extreme Reissner-Nordstrom
black-hole solution of N=2 supergravity are shown to be normalizable. The
gravitini and dilatini zero modes of axion-dilaton extreme black-hole solutions
of N=4 supergravity are also given and found to have finite norms. These norms
are duality invariant. The finiteness and positivity of the norms in both cases
are found to be correlated with the Witten-Israel-Nester construction; however,
we have replaced the Witten condition by the pure-spin-3/2 constraint on the
gravitini. We compare our calculation of the norms with the calculations which
provide the moduli space metric for extreme black holes.
The action of the N=2 hypermultiplet with an off-shell central charge
describes the solitons of N=2 supergravity. This action, in the
Majumdar-Papapetrou multi-black-hole background, is shown to be N=2 rigidly
supersymmetric.Comment: 18 pages, LaTe
Tur\'an Graphs, Stability Number, and Fibonacci Index
The Fibonacci index of a graph is the number of its stable sets. This
parameter is widely studied and has applications in chemical graph theory. In
this paper, we establish tight upper bounds for the Fibonacci index in terms of
the stability number and the order of general graphs and connected graphs.
Tur\'an graphs frequently appear in extremal graph theory. We show that Tur\'an
graphs and a connected variant of them are also extremal for these particular
problems.Comment: 11 pages, 3 figure
Environmental Prospects for the Next Century: Implications for Long-Term Policy and Research Strategies
This report examines environmental prospects for the twenty-first century, and then suggests some appropriate long-term management strategies and research priorities. A few current global trends (e.g., increasing concentrations of atmospheric trace gases, population, agricultural production) are practically irreversible over the next couple of decades due to inertias in the systems involved. However, there are bound to be nonlinearities, discontinuities, and surprises in the behavior of many environmental and socioeconomic systems. In fact, the main challenge for managers, policy analysts, and politicians is to develop strategies that are robust in response to these surprises, exploiting the opportunities as well as softening the shocks that may arise.
The main characteristics of such strategies are that they be adaptive, interdisciplinary, and cross-sectoral. As pointed out by Harvey Brooks (1986), we must avoid partial solutions that may be optimal for a particular sector or decade, but which are far from optimal for the biosphere as a whole over the long term
Influence of a Uniform Current on Collective Magnetization Dynamics in a Ferromagnetic Metal
We discuss the influence of a uniform current, , on the
magnetization dynamics of a ferromagnetic metal. We find that the magnon energy
has a current-induced contribution proportional to
, where is the spin-current, and
predict that collective dynamics will be more strongly damped at finite . We obtain similar results for models with and without local moment
participation in the magnetic order. For transition metal ferromagnets, we
estimate that the uniform magnetic state will be destabilized for . We discuss the relationship of this effect to
the spin-torque effects that alter magnetization dynamics in inhomogeneous
magnetic systems.Comment: 12 pages, 2 figure
Seasonal size variation in the predatory cladoceran Bythotrephes cederstroemii in Lake Michigan
1. Dry weight, body length and spine length were measured for the exotic cladoceran Bythotrephes cederstroemii collected from offshore and inshore stations in southeastern Lake Michigan. Average dry weight of each developmental stage exhibited seasonal variation by a factor of more than 5. 2. Mean dry weight of Bythotrephes was closely correlated with water temperature. Contrary to the inverse relationship between water temperature and body size frequently observed for other invertebrates, the dry weight of Bythotrephes increased at higher ambient temperatures. 3. No significant correlation was observed between abundances of major zooplankton taxa and the dry weight of Bythotrephes . An indirect effect of temperature on prey consumption may cause seasonal variation in dry weight of Bythotrephes in Lake Michigan. 4. Distances between adjacent pairs of barbs, added to the caudal spine with each moult, are significantly shorter in Bythotrephes which produce resting eggs. Less material investment in the exoskeleton of sexually reproducing females was observed in favour of growth and reproduction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74641/1/j.1365-2427.1994.tb00842.x.pd
Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)
The basic known and hypothetic one- and two-element phases of the B-C-N-O
system (both superhard phases having diamond and boron structures and
precursors to synthesize them) are described. The attention has been given to
the structure, basic mechanical properties, and methods to identify and
characterize the materials. For some phases that have been recently described
in the literature the synthesis conditions at high pressures and temperatures
are indicated.Comment: Review on superhard B-C-N-O phase
Functional Anatomy of the Female Pelvic Floor
The anatomic structures in the female that prevent incontinence and genital organ prolapse on increases in abdominal pressure during daily activities include sphincteric and supportive systems. In the urethra, the action of the vesical neck and urethral sphincteric mechanisms maintains urethral closure pressure above bladder pressure. Decreases in the number of striated muscle fibers of the sphincter occur with age and parity. A supportive hammock under the urethra and vesical neck provides a firm backstop against which the urethra is compressed during increases in abdominal pressure to maintain urethral closure pressures above the rapidly increasing bladder pressure. This supporting layer consists of the anterior vaginal wall and the connective tissue that attaches it to the pelvic bones through the pubovaginal portion of the levator ani muscle, and the uterosacral and cardinal ligaments comprising the tendinous arch of the pelvic fascia. At rest the levator ani maintains closure of the urogenital hiatus. They are additionally recruited to maintain hiatal closure in the face of inertial loads related to visceral accelerations as well as abdominal pressurization in daily activities involving recruitment of the abdominal wall musculature and diaphragm. Vaginal birth is associated with an increased risk of levator ani defects, as well as genital organ prolapse and urinary incontinence. Computer models indicate that vaginal birth places the levator ani under tissue stretch ratios of up to 3.3 and the pudendal nerve under strains of up to 33%, respectively. Research is needed to better identify the pathomechanics of these conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72597/1/annals.1389.034.pd
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
- …