117 research outputs found

    General relativistic magnetohydrodynamical κ\kappa-jet models for Sgr A*

    Get PDF
    The observed spectral energy distribution of an accreting supermassive black hole typically forms a power-law spectrum in the Near Infrared (NIR) and optical wavelengths, that may be interpreted as a signature of accelerated electrons along the jet. However, the details of acceleration remain uncertain. In this paper, we study the radiative properties of jets produced in axisymmetric GRMHD simulations of hot accretion flows onto underluminous supermassive black holes both numerically and semi-analytically, with the aim of investigating the differences between models with and without accelerated electrons inside the jet. We assume that electrons are accelerated in the jet regions of our GRMHD simulation. To model them, we modify the electrons' distribution function in the jet regions from a purely relativistic thermal distribution to a combination of a relativistic thermal distribution and the κ\kappa-distribution function. Inside the disk, we assume a thermal distribution for the electrons. We calculate jet spectra and synchrotron maps by using the ray tracing code {\tt RAPTOR}, and compare the synthetic observations to observations of Sgr~A*. Finally, we compare numerical models of jets to semi-analytical ones. We find that in the κ\kappa-jet models, the radio-emitting region size, radio flux, and spectral index in NIR/optical bands increase for decreasing values of the κ\kappa parameter, which corresponds to a larger amount of accelerated electrons. The model with κ=3.5\kappa = 3.5, ηacc=5−10%\eta_{\rm acc}=5-10\% (the percentage of electrons that are accelerated), and observing angle i=30oi = 30^{\rm o} fits the observed Sgr~A* emission in the flaring state from the radio to the NIR/optical regimes, while κ=3.5\kappa = 3.5, ηacc<1%\eta_{\rm acc}< 1\%, and observing angle i=30oi = 30^{\rm o} fit the upper limits in quiescence.Comment: 17 pages, 16 figures, 1 tabl

    RAPTOR II: Polarized radiative transfer in curved spacetime

    Full text link
    Accreting supermassive black holes are sources of polarized radiation that propagates through highly curved spacetime before reaching the observer. In order to help interpret observations of such polarized emission, accurate and efficient numerical schemes for polarized radiative transfer in curved spacetime are needed. In this manuscript we extend our publicly available radiative transfer code RAPTOR to include polarization. We provide a brief review of different codes and methods for covariant polarized radiative transfer available in the literature and existing codes, and present an efficient new scheme. For the spacetime-propagation aspect of the computation, we develop a compact, Lorentz-invariant representation of a polarized ray. For the plasma-propagation aspect of the computation, we perform a formal analysis of the stiffness of the polarized radiative-transfer equation with respect to our explicit integrator, and develop a hybrid integration scheme that switches to an implicit integrator in case of stiffness, in order to solve the equation with optimal speed and accuracy for all possible values of the local optical/Faraday thickness of the plasma. We perform a comprehensive code verification by solving a number of well-known test problems using RAPTOR and comparing its output to exact solutions. We also demonstrate convergence with existing polarized radiative-transfer codes in the context of complex astrophysical problems. RAPTOR is capable of performing polarized radiative transfer in arbitrary, highly curved spacetimes. This capability is crucial for interpreting polarized observations of accreting black holes, which can yield information about the magnetic-field configuration in such accretion flows. The efficient formalism implemented in RAPTOR is computationally light and conceptually simple. The code is publicly available

    Observing supermassive black holes in virtual reality

    Get PDF
    We present a full 360 degree (i.e., 4Ï€\pi steradian) general-relativistic ray-tracing and radiative transfer calculations of accreting supermassive black holes. We perform state-of-the-art three-dimensional general relativistic magnetohydrodynamical simulations using the BHAC code, subsequently post-processing this data with the radiative transfer code RAPTOR. All relativistic and general-relativistic effects, such as Doppler boosting and gravitational redshift, as well as geometrical effects due to the local gravitational field and the observer's changing position and state of motion, are therefore calculated self-consistently. Synthetic images at four astronomically-relevant observing frequencies are generated from the perspective of an observer with a full 360-degree view inside the accretion flow, who is advected with the flow as it evolves. As an example, we calculated images based on recent best-fit models of observations of Sagittarius A*. These images are combined to generate a complete 360-degree Virtual Reality movie of the surrounding environment of the black hole and its event horizon. Our approach also enables the calculation of the local luminosity received at a given fluid element in the accretion flow, providing important applications in, e.g., radiation feedback calculations onto black hole accretion flows. In addition to scientific applications, the 360-degree Virtual Reality movies we present also represent a new medium through which to communicate black hole physics to a wider audience, serving as a powerful educational tool.Comment: 25 pages, 11 figures, 1 movie; https://www.youtube.com/watch?v=SXN4hpv977s&t=57

    RAPTOR I: Time-dependent radiative transfer in arbitrary spacetimes

    Get PDF
    Observational efforts to image the immediate environment of a black hole at the scale of the event horizon benefit from the development of efficient imaging codes that are capable of producing synthetic data, which may be compared with observational data. We aim to present RAPTOR, a new public code that produces accurate images, animations, and spectra of relativistic plasmas in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer calculations along the rays. The code is compatible with any analytical or numerical spacetime. It is hardware-agnostic and may be compiled and run both on GPUs and CPUs. We describe the algorithms used in RAPTOR and test the code's performance. We have performed a detailed comparison of RAPTOR output with that of other radiative-transfer codes and demonstrate convergence of the results. We then applied RAPTOR to study accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fast-light and slow-light paradigms. Using RAPTOR to produce synthetic images and light curves of a GRMHD model of an accreting black hole, we find that the relative difference between fast-light and slow-light light curves is less than 5%. Using two distinct radiative-transfer codes to process the same data, we find integrated flux densities with a relative difference less than 0.01%. For two-dimensional GRMHD models, such as those examined in this paper, the fast-light approximation suffices as long as errors of a few percent are acceptable. The convergence of the results of two different codes demonstrates that they are, at a minimum, consistent.Comment: 18 pages, 14 figures, 5 table

    κ\kappamonty: a Monte Carlo Compton Scattering code including non-thermal electrons

    Full text link
    Low-luminosity active galactic nuclei are strong sources of X-ray emission produced by Compton scattering originating from the accretion flows surrounding their supermassive black holes. The shape and energy of the resulting spectrum depend on the shape of the underlying electron distribution function (DF). In this work, we present an extended version of the grmonty code, called κ\kappamonty. The grmonty code previously only included a thermal Maxwell J\"utner electron distribution function. We extend the gromty code with non-thermal electron DFs, namely the κ\kappa and power-law DFs, implement Cartesian Kerr-Schild coordinates, accelerate the code with MPI, and couple the code to the non-uniform AMR grid data from the GRMHD code BHAC. For the Compton scattering process, we derive two sampling kernels for both distribution functions. Finally, we present a series of code tests to verify the accuracy of our schemes. The implementation of non-thermal DFs opens the possibility of studying the effect of non-thermal emission on previously developed black hole accretion models.Comment: 12 pages, 9 figures, submitted to journa

    Synchrotron polarization signatures of surface waves in supermassive black hole jets

    Full text link
    Supermassive black holes in active galactic nuclei (AGN) are known to launch relativistic jets, which are observed across the entire electromagnetic spectrum and are thought to be efficient particle accelerators. Their primary radiation mechanism for radio emission is polarized synchrotron emission produced by a population of non-thermal electrons. In this Letter, we present a global general relativistic magnetohydrodynamical (GRMHD) simulation of a magnetically arrested disk (MAD). After the simulation reaches the MAD state, we show that waves are continuously launched from the vicinity of the black hole and propagate along the interface between the jet and the wind. At this interface, a steep gradient in velocity is present between the mildly relativistic wind and the highly relativistic jet. The interface is, therefore, a shear layer, and due to the shear, the waves generate roll-ups that alter the magnetic field configuration and the shear layer geometry. We then perform polarized radiation transfer calculations of our GRMHD simulation and find signatures of the waves in both total intensity and linear polarization, effectively lowering the fully resolved polarization fraction. The tell-tale polarization signatures of the waves could be observable by future Very Long Baseline Interferometric observations, e.g., by the next-generation Event Horizon Telescope.Comment: 20 pages, 17 figures, accepted for publication in ApJ

    First M87 Event Horizon Telescope Results and the Role of ALMA

    Full text link
    In April 2019, the Event Horizon Telescope (EHT) collaboration revealed the first image of the candidate super-massive black hole (SMBH) at the centre of the giant elliptical galaxy Messier 87 (M87). This event-horizon-scale image shows a ring of glowing plasma with a dark patch at the centre, which is interpreted as the shadow of the black hole. This breakthrough result, which represents a powerful confirmation of Einstein's theory of gravity, or general relativity, was made possible by assembling a global network of radio telescopes operating at millimetre wavelengths that for the first time included the Atacama Large Millimeter/ submillimeter Array (ALMA). The addition of ALMA as an anchor station has enabled a giant leap forward by increasing the sensitivity limits of the EHT by an order of magnitude, effectively turning it into an imaging array. The published image demonstrates that it is now possible to directly study the event horizon shadows of SMBHs via electromagnetic radiation, thereby transforming this elusive frontier from a mathematical concept into an astrophysical reality. The expansion of the array over the next few years will include new stations on different continents - and eventually satellites in space. This will provide progressively sharper and higher-fidelity images of SMBH candidates, and potentially even movies of the hot plasma orbiting around SMBHs. These improvements will shed light on the processes of black hole accretion and jet formation on event-horizon scales, thereby enabling more precise tests of general relativity in the truly strong field regime.Comment: 11 pages + cover page, 6 figure

    Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature—a ring with azimuthal brightness asymmetry—and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009-2017 to be consistent with a persistent asymmetric ring of ∼40 μas diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin

    Aortic valve calcification volumes and chronic brain infarctions in patients undergoing transcatheter aortic valve implantation

    Get PDF
    Chronic silent brain infarctions, detected as new white matter hyperintensities on magnetic resonance imaging (MRI) following transcatheter aortic valve implantation (TAVI), are associated with long-term cognitive deterioration. This is the first study to investigate to which extent the calcification volume of the native aortic valve (AV) measured with cardiac computed tomography angiography (CTA) predicts the increase in chronic white matter hyperintensity volume after TAVI. A total of 36 patients (79 ± 5 years, median EuroSCORE II 1.9%, Q1–Q3 1.5–3.4%) with severe AV stenosis underwent fluid attenuation inversion recovery (FLAIR) MRI < 24 h prior to TAVI and at 3 months follow-up for assessment of cerebral white matter hyperintensity volume (mL). Calcification volumes (mm3) of the AV, aortic arch, landing zone and left ventricle were measured on the CTA pre-TAVI. The largest calcification volumes were found in the AV (median 692 mm3) and aortic arch (median 633 mm3), with a large variation between patients (Q1–Q3 482–1297 mm3 and 213–1727 mm3, respectively). The white matter hyperintensity volume increased in 72% of the patients. In these patients the median volume increase was of 1.1 mL (Q1–Q3 0.3–4.6 mL), corresponding with a 27% increase from baseline (Q1–Q3 7–104%). The calcification volume in the AV predicted the increase of white matter hyperintensity volume (Δ%), with a 35% increase of white matter hyperintensity volume, per 100 mm3 of AV calcification volume (SE 8.5, p < 0.001). The calcification volumes in the aortic arch, landing zone and left ventricle were not associated with the increase in white matter hyperintensity volume. In 72% of the patients new chronic white matter hyperintensities developed 3 months after TAVI, with a median increase of 27%. A higher calcification volume in the AV was associated with a larger increase in the white matter hyperintensity volume. These findings show the potential for automated AV calcium screening as an imaging biomarker to predict chronic silent brain infarctions
    • …
    corecore