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Observing supermassive black holes in
virtual reality
Jordy Davelaar1* , Thomas Bronzwaer1, Daniel Kok1, Ziri Younsi2,3, Monika Mościbrodzka1 and
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Abstract
We present a 360◦ (i.e., 4π steradian) general-relativistic ray-tracing and radiative transfer calculations of accreting
supermassive black holes. We perform state-of-the-art three-dimensional general-relativistic
magnetohydrodynamical simulations using the BHAC code, subsequently post-processing this data with the
radiative transfer code RAPTOR. All relativistic and general-relativistic effects, such as Doppler boosting and
gravitational redshift, as well as geometrical effects due to the local gravitational field and the observer’s changing
position and state of motion, are therefore calculated self-consistently. Synthetic images at four
astronomically-relevant observing frequencies are generated from the perspective of an observer with a full 360◦
view inside the accretion flow, who is advected with the flow as it evolves. As an example we calculated images
based on recent best-fit models of observations of Sagittarius A*. These images are combined to generate a
complete 360◦ Virtual Reality movie of the surrounding environment of the black hole and its event horizon. Our
approach also enables the calculation of the local luminosity received at a given fluid element in the accretion flow,
providing important applications in, e.g., radiation feedback calculations onto black hole accretion flows. In addition
to scientific applications, the 360◦ Virtual Reality movies we present also represent a new medium through which to
interactively communicate black hole physics to a wider audience, serving as a powerful educational tool.

Keywords: Accreting black holes; Plasma physics; Radiative transfer; General relativity; Virtual reality

1 Introduction
Active Galactic Nuclei (AGN) are strong sources of elec-
tromagnetic radiation from the radio up to γ -rays. Their
source properties can be explained in terms of a galaxy
hosting an accreting supermassive black hole (SMBH) in
its core. The Milky Way also harbours a candidate SMBH,
Sagittarius A* (Sgr A*), which is subject to intensive Very-
Long-Baseline Interferometric (VLBI) studies (Krichbaum
et al. 1998; Bower et al. 2004, 2014; Shen et al. 2005; Doele-
man et al. 2008; Brinkerink et al. 2016). Sgr A* is one of
the primary targets of the Event Horizon Telescope Col-
laboration (EHTC), which aims to image for the very first
time the “shadow” of a black hole (Goddi et al. 2017). The-
oretical calculations predict this shadow to manifest as a
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darkening of the inner accretion flow image anticipated
to be observed due to the presence of a black hole event
horizon, representing the region within which no radiation
can escape (Grenzebach 2016; Goddi et al. 2017; Younsi
et al. 2016). The apparent size on the sky of this shadow
is constrained by Einstein’s General Theory of Relativ-
ity (GR) (Bardeen 1973; Cunningham and Bardeen 1973;
Luminet 1979; Viergutz 1993; Falcke et al. 2000; Johannsen
and Psaltis 2010; Johannsen 2013; Younsi et al. 2016), and
observational measurements of the black hole shadow size
and shape can in principle provide a strong test of the
validity of GR in the strong-field regime (Johannsen and
Psaltis 2010; Abdujabbarov et al. 2015; Younsi et al. 2016;
Goddi et al. 2017).

The theoretical aspects of the observational study of
Sgr A* require the generation of general-relativistic mag-
netohydrodynamical (GRMHD) simulation data of the ac-
cretion flow onto a black hole, which is subsequently used
to calculate synthetic observational data for physically-
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motivated plasma models which can be compared to ac-
tual observational data. In the past, synthetic observa-
tional data was generated by ray-tracing radiative trans-
fer codes which calculate the emission originating from
the accreting black hole and measured by a far away ob-
server by solving the equations of radiative transfer along
geodesics, i.e., the paths of photons (or particles) as they
propagate around the black hole in either static spacetimes
(e.g. Broderick 2006; Noble et al. 2007; Dexter and Agol
2009; Shcherbakov and Huang 2011; Vincent et al. 2011;
Younsi et al. 2012; Chan et al. 2013, 2017; Younsi and Wu
2015; Dexter 2016; Schnittman et al. 2016; Moscibrodzka
and Gammie 2017; Bronzwaer et al. 2018) or dynamical
spacetimes (Kelly et al. 2017; Schnittman et al. 2018).

These models vary only in the dynamics of the black
hole accretion flow, with the observer remaining station-
ary through the calculations. In this work, we consider the
most general case of an observer who can vary arbitrarily
in both their position (with respect to the black hole) and
their state of motion. In particular, the observer is chosen
to follow the flow of the accreting plasma in a physically-
meaningful manner through advection, and therefore all
dynamical effects introduced by the motion of the ob-
server around the black hole are also correctly included in
the imaging calculation.

With recent developments in Graphical Processor Units
(GPUs) and Virtual Reality (VR) rendering, it has become
possible to visualise these astrophysical objects at high res-
olutions in a 360◦ (i.e., 4π steradian) format that covers the
entire celestial sphere of an observer, enabling the study of
the surroundings of an accreting black hole from within
the accretion flow itself. Virtual Reality is a broad con-
cept that encompasses different techniques, such as im-
mersive visualisation, stereographic rendering, and inter-
active visualisations. In this work, we explore the first of
these three, by rendering the full celestial sphere of the
observer along a trajectory. The viewer can then look in
any direction during the animation; this is also known as
360◦ VR. Another important feature of VR, stereographic
rendering, presents different images to each eye, so that
the viewer experiences stereoscopic depth. For our appli-
cation, however, this technique is not relevant, since the
physical distance between the eyes of the observer is much
smaller than the typical length scale of a supermassive
black hole (which is 6.645 × 1011 cm for Sagittarius A*),
and therefore we would not see any depth in the image
(just as we do not see stereoscopic depth when looking
at the Moon). Interactive visualisations, where the viewer
also has the freedom to change his or her position, would
require real-time rendering of the environment, which is
beyond the reach of current computational resources.

Our new way of visualising black holes enables the study
of accretion from the point of view of an observer close
to the black hole event horizon, with the freedom to im-
age in all directions, as opposed to the perspective of an

observer far away from the source with a fixed position
and narrow field of view. In the case of a distant observer,
the source appears projected onto the celestial sphere (thus
appearing two-dimensional). Since one cannot easily dis-
tinguish three-dimensional structures within the accretion
flow, placing the observer inside the flow itself opens a new
window in understanding the geometrical structure and
dynamical properties of such systems. Several researchers
have previously considered an observer moving around, or
falling into a black hole, e.g.,

(1) falling through the event horizon as illustrated
through the gravitational lensing distortions of
different regions (e.g., the ergo-region and event
horizon), represented as chequerboard patterns
projected onto an observer’s image plane (Madore
2011),

(2) a flight through a simulation of a non-rotating black
hole (Hamilton 1998),

(3) a flight through an accretion disk of a black hole
using an observer with a narrow field of view camera
(Luminet 2011),

(4) a 360◦ VR movie of an observer falling into a black
hole surrounded by vacuum with illumination
provided exclusively by background starlight, i.e.,
without an accretion flow (Younsi 2016),

(5) a 360◦ VR movie of a hotspot orbiting a SMBH
(Moscibrodzka 2018), and

(6) a 360◦ VR movie of an N-body/hydrodynamical
simulation of the central parsec of the Galactic
center (Russell 2017).

In this study, we consider a self-consistent three-
dimensional GRMHD simulation of the accretion flow
onto a spinning (Kerr) black hole, determining its time
evolution and what an observer would see in full 360◦ VR
as they move through the dynamically evolving flow. To
image accreting black holes in VR, we use the general-
relativistic radiative-transfer (GRRT) code RAPTOR
(Bronzwaer et al. 2018). The code incorporates all impor-
tant general-relativistic effects, such as Doppler boosting
and gravitational lensing in curved spacetimes, and can
be compiled and run on both Central Processing units
(CPU’s) and GPU’s by using NVIDIA’s OpenACC frame-
work.

In this work, we investigate the environment of accreting
black holes from within the accretion flow itself with a vir-
tual camera. As an example astrophysical case we model
the supermassive black hole Sgr A*, although the methods
presented in this work are generally applicable to any black
hole as long as the radiation field’s feedback onto the ac-
creting plasma has a negligible effect on the plasma’s mag-
netohydrodynamical properties, which is the case for Low
Luminosity AGNs or low/hard state X-ray binaries.

The trajectory of this camera consists of two phases:
a hovering trajectory, where the observer moves with a
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pre-defined velocity, and a particle trajectory, where the
observer’s instantaneous velocity is given by a trajectory
of a tracer particle computed with a seperate axisymetric
GRMHD simulation. The tracer particle follows the local
plasma velocity (specifically, it is obtained by interpolating
the plasma velocity of the GRMHD simulation cells to the
camera’s location).

We present 360◦ VR simulation of Sgr A*, demonstrating
the applications of VR for studying not just accreting black
holes but also for education, public outreach and data vi-
sualisation and interpretation amongst the wider scien-
tific community. In Sect. 2 we describe the camera setup,
present several black hole shadow lensing tests, describe
the camera trajectories and outline the radiative transfer
calculation. In Sect. 3 we present our 360◦ VR movie of an
accreting black hole. In Sect. 4 we discuss our results and
outlook.

2 Methods
In this section, we introduce the virtual camera setup,
present black hole shadow vacuum lensing tests using both
stationary and free-falling observers at different radial po-
sitions, discuss the different camera trajectories used in
the VR movie shown later in this article and introduce the
GRMHD plasma model that is used as an input for the ge-
ometry of the accretion flow onto the black hole.

2.1 VR camera
The original RAPTOR code (Bronzwaer et al. 2018) ini-
tialises rays (i.e., photon geodesics) using impact param-
eters determined form coordinate locations on the ob-
server’s image plane (Bardeen et al. 1972). This method
is not suitable for VR since it only applies to distant ob-
servers where geometrical distortions in the image which
arise from the strong gravitational field (i.e., spacetime cur-
vature) of the black hole are negligible. To generate full
360◦ images as seen by an observer close to the black hole,
we have extended the procedure of Noble et al. (2007) to
use an orthonormal tetrad basis for the construction of ini-
tial photon wave vectors, distributing them uniformly as a
function of θ ∈ [0,π ] and φ ∈ [0, 2π ] over a unit sphere.

The advantage of this approach is that all geometrical,
relativistic, and general-relativistic effects on the observed
emission are naturally and self-consistently folded into the
imaging calculation, providing a complete and physically-
accurate depiction of what would really be seen from an
observer’s perspective.

The first step in building the tetrad basis is using a set of
trial vectors (specifically, 4-vectors), tμ

(a), to find the tetrad
basis vectors, eμ

(a). Herein, parenthesised lowercase Roman
letters correspond to tetrad frame indices while Greek let-
ters correspond to coordinate frame indices. Unless stated
otherwise, all indices are taken to vary over 0–3, with 0
denoting the temporal component and 1–3 denoting the

spatial components of a given 4-vector. Given a set of {θ ,φ}
pairs (typically on a uniform grid), the corresponding wave
vector components in the tetrad frame, k(a), are given by:

k(0) = +1, (1)

k(1) = – cos(φ) cos(θ ), (2)

k(2) = – sin(θ ), (3)

k(3) = – sin(φ) cos(θ ), (4)

where it is trivial to verify that this wave vector satisfies
k(a)k(a) = 0, as expected for null geodesics.

In order to determine the wave vector defined in Eqs. (1)–
(4) in the coordinate frame, kα , it is necessary to first con-
struct the tetrad vectors explicitly. The first trial vector
we use is the four-velocity of the observer, tμ

(0) = uμ

obs. This
vector is, by virtue of sensible initial conditions and preser-
vation of the norm during integration, normalised. Using
the four-velocity as an initial trial vector also ensures that
Doppler effects due to the motion of the camera is included
correctly. It is then possible to build a set of orthonormal
basis vectors eμ

(a) by using the Gram–Schmidt orthonor-
malisation procedure. The required trial vectors for this
procedure are given by:

tμ

(1) = (0, –1, 0, 0), (5)

tμ

(2) = (0, 0, 1, 0), (6)

tμ

(3) = (0, 0, 0, 1). (7)

This set of trial vectors is chosen such that the observer al-
ways looks towards the black hole in a right-handed basis.
Any other initialisation, e.g., along with the velocity vec-
tor, could cause discomfort when used in VR due to high
azimuthal velocities. The wave vector may now be found
by taking the inner product of the tetrad basis vectors and
the wave vector in the observer’s frame as:

kμ = eμ

(a)k
(a). (8)

The observer’s camera is then initialised at a position Xμ
cam

and uniformly-spaced rays are launched in all directions
from this point. This method is fully covariant and is there-
fore valid in any coordinate system.

2.2 Black holes and gravitational lensing
In this work, we adopt geometrical units, G = M = c = 1,
such that length and time scales are dimensionless. Here-
after M denotes the black hole mass, and setting M = 1 is
equivalent to rescaling the length scale to units of the grav-
itational radius, rg := GM/c2, and the time scale to units
of rg/c = GM/c3. To rescale lengths and times to physical
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units, one simply scales rg and rg/c using the appropri-
ate black hole mass. For Sgr A* these scalings are given by
rg = 5.906 × 1011 cm and rg/c = 19.7 seconds, respectively.

The line element in GR determines the separation be-
tween events in space-time, and is defined as:

ds2 = gμν dxμdxν , (9)

where gμν is the metric tensor and dxμ an infinitesimal
displacement vector. The metric is a geometrical object
that contains all the information concerning the space-
time under consideration (in this study a rotating Kerr
black hole) and is used to raise and lower tensor indices,
e.g., gαμAμν1ν2...νn = Aν1ν2...νn

α , where the Einstein summa-
tion convention is implicitly assumed. The line element
for a rotating black hole is given by the Kerr metric (Kerr
1963), which is written in Boyer–Lindquist coordinates
xμ = (t, r, θ ,φ) as:

ds2 = –
(

1 –
2r
Σ

)
dt2 –

4ar sin2 θ

Σ
dt dφ +

Σ

	
dr2

+ Σ dθ2

+
(

r2 + a2 +
2ra2 sin2 θ

Σ

)
sin2 θ dφ2, (10)

where

	 := r2 – 2r + a2, (11)

Σ := r2 + a2 cos2 θ , (12)

and a is the dimensionless spin parameter of the black hole.
In the above form, the Kerr metric has a coordinate

singularity at the outer (and inner) event horizon, which
presents difficulties for both the numerical GRMHD evo-
lution and the GRRT calculations. This also prohibits the
observer’s camera from passing smoothly through this re-
gion. To avoid this we transform (10) from xμ into horizon-
penetrating Kerr–Schild coordinates x̃μ = (t̃, r̃, θ̃ , φ̃) as:

t̃ = t + ln	 + 2R, r̃ = r,

θ̃ = θ , φ̃ = φ + aR,
(13)

where

R≡ 1
rout

– rin ln

(
r – rout

r – rin

)
. (14)

In Eq. (14) the outer horizon is given by rout ≡ 1 +
√

1 – a2,
and the inner horizon by rin ≡ 1 –

√
1 – a2. Hereafter the

coordinate system employed in this study is the modified
Kerr–Schild (MKS) system, denoted by Xμ, which is re-
lated to the aforementioned Kerr–Schild coordinates, x̃μ,

as:

X0 = t̃, X1 = ln r̃, X2 = θ̃/π , X3 = φ̃. (15)

To visualise the effect of a moving camera compared to a
stationary camera, we calculate light rays originating from
both a stationary observer and a free-falling observer. This
calculation is performed at two different positions, which
in MKS coordinates are given by:

Xμ
1 = (0, ln 10, 0, 0) and Xμ

2 = (0, ln 3, 0, 0). (16)

Consequently, the observer positions 1 and 2 correspond
to radial distances of 10 rg and 3 rg, respectively. An ob-
server at rest has a four-velocity

uμ
0 = (α, 0, 0, 0), (17)

where α := (–gtt)–1/2 is the lapse function. At the positions
Xμ

1 and Xμ
2 the free-falling observer has the following cor-

responding four-velocity components:

uμ
1 = (1.10, –0.029, 0, –0.0011) and

uμ
2 = (1.34, –0.26, 0, –0.034).

(18)

The free-falling velocities were obtained by numerically
integrating the geodesic equation for a free-falling massive
particle.

To visualise the effect of the observer’s motion on the
observed field of view, we place a sphere around both the
observer and the black hole, which is centred on the black
hole. This is what we subsequently refer to as the “celes-
tial sphere”. The black hole spin is taken to be a = 0.9375,
the exact value of the spin parameter for Sgr A* is un-
known, the chosen value was the best fit of a parameter
survey (Mościbrodzka et al. 2009). The observer is posi-
tioned in the equatorial plane of the black hole (i.e., θ =
90◦), where the effects of gravitational lensing are most sig-
nificant and asymmetry in the shadow shape due to the ro-
tational frame dragging arising from the spin of the black
hole is most pronounced.

Each quadrant of the celestial sphere is then painted with
a distinct colour and lines of constant longitude and lati-
tude are included to aid in the interpretation of the angu-
lar size and distortion of the resulting images. The celes-
tial sphere in Minkowski spacetime, where we used carte-
sian coordinates to integrate the geodesics, as seen by an
observer positioned at 10 rg can be seen in Fig. 1. The
number of coloured patches in the θ and φ directions is
(nθ , nφ) = (8, 16). Therefore, excluding the black lines of
constant latitude and longitude (both 1.08◦ in width), each
coloured patch subtends an angle of 22.5◦ in both direc-
tions. We also calculated 25 light rays for each of these ob-
servers, distributing them equally over (θ ,φ) in the frame
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Figure 1 Celestial sphere in Minkowksi spacetime for an observer at r = 10 rg . The different colors represent different quadrants of the sky, with
yellow and blue being behind the observer, while red and green are in front of the observer. The black lines represent lines of constant longitude
and lattitude

of the observer (see bottom rows of Figs. 2 & 3) in order to
interpret the geometrical lensing structure of the images
in terms of their constituent light rays.

Figure 2 presents black hole shadow images and back-
ground lensing patterns for the Kerr black hole as seen
by both a stationary observer (top panel) and a radially
infalling observer (middle panel) located at a distance of
10 rg. The angular size of the shadow is larger for the sta-
tionary observer. This observer, being in an inertial frame,
is essentially accelerating such that the local gravitational
acceleration of the black hole is precisely counteracted by
the acceleration of their reference frame. This gives rise to
a force on the observer directed away from the black hole
itself, reducing the angular momentum of photons ori-
ented towards the black hole (seen as the innermost four
rays being bent around the horizon), effectively increas-
ing the black hole’s capture cross-section and producing
a larger shadow. Strong gravitational lensing of the image
due to the presence of the compact mass of the black hole
is evident in the warping of the grid lines.

In Fig. 3 the observers are now placed at 3 rg, i.e., very
close to the black hole. For the stationary observer, all pho-
tons within a field of view centred on the black hole of
>180◦ in the horizontal direction and over the entire ver-
tical direction, are captured by the black hole. Such an ob-
server looking at the black hole would see nothing but the
darkness of the black hole shadow in all directions. This
is clear in the corresponding bottom-left plot of photon
trajectories. As the observer approaches the event hori-
zon the entire celestial sphere begins to focus into an ever
shrinking point adjacent to the observer. For the infalling
observer, the lensed image is far less extreme. Whilst the
shadow presents a larger size in the observer’s field of view,
this is mostly geometrical, i.e., due to the observer’s prox-
imity to the black hole. There is also visible magnifica-

tion of regions of the celestial sphere behind the observer.
These results clearly follow from the photon trajectories in
the bottom-right panel.

In all images of the shadow, repeated patches of decreas-
ingly small area and identical colours are visible. In partic-
ular, multiple blue and yellow patches whose photons be-
gin from behind the observer are visible near the shadow.
These are a consequence of rays which perform one or
more orbits of the black hole before reaching the observer,
thereby appearing to originate from in front of the ob-
server.

2.3 Camera trajectories
As described in Sect. 1, we consider two distinct phases for
the camera trajectory. The first phase assumes a hovering
observer positioned either at a fixed point or on a hover-
ing trajectory around the black hole (i.e., the camera’s mo-
tion is unaffected by the plasma motion and is effectively in
an inertial frame). For the second phase of the trajectory,
the observer’s four-velocity is determined from an axisym-
metric GRMHD simulation which includes tracer particles
that follow the local plasma velocity. The choice to per-
form a separate tracer-particle simulation that is axisym-
metric, in contrast to the 3D plasma simulation, was made
to omit turbulent features in the φ direction which can be
nauseating to watch in VR environments. This makes the
movie scientifically less accurate, but is necessary to pre-
vent viewers from experiencing motion sickness. Since the
methods presented in this paper are not dependent on the
dimensionality of the tracer particle simulation, they can
be used for full 3D tracer particle simulations as well. In
the following subsections, these two camera trajectories
are described in detail.
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Figure 2 Celestial sphere and black hole shadow images for an observer located at r = 10 rg . Top panel: celestial sphere and shadow image as seen
by a stationary observer. The different colors represent different quadrants of the sky, yellow and blue being behind the observer, while red and
green are in front of the observer. The black lines represent lines of constant longitude and lattitude while the black, circular region in the center is
the black-hole shadow. Middle panel: as top panel, but seen by a radially in-falling observer. Bottom-left panel: photons originating from a stationary
observer’s camera, as used to generate the top panel. Bottom-right panel: photons originating from a radially in-falling observer’s camera, as used to
generate the middle panel. The black hole event horizon is shown as the black region in both bottom panels. The shadow sizes are similar in both
panels, but differences are clearly visible. See corresponding text for further discussion

2.3.1 Hovering trajectory
In the first phase of the trajectory, the observer starts
in a vacuum, with only the light from the distant back-
ground stars being considered in the calculation. The ob-
server is initially at a radius of 400 rg and moves inward
to 40 rg. After this, the observer rotates around the black
hole, which we term the “initialisation scene”, and com-

prises 1600 frames. Each frame is separated by a time in-
terval of 1 rg/c. The first phase of the movie, which includes
the time-evolving accretion flow, consists of 2000 frames
from the perspective of an observer at a radius of 40 rg and
an inclination of 60◦ with respect to the spin axis of the
black hole. We refer to this first phase as “Scene 1”. We then
subsequently rotate around the black hole whilst simulta-
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Figure 3 Celestial sphere and black hole shadow images for an observer located at r = 3 rg . As in Fig. 2, now with the observer located at r = 3 rg .
Differences between the shadow size and shape as seen by the two observers are now significant. See corresponding text for further discussion

neously moving inward to a radius of 20 rg over a span of
1000 frames, which we refer to as “Scene 2”. Within Scene
2, after the first 500 frames the observer then starts to de-
celerate until stationary once more.

2.3.2 Particle trajectory
For the second phase of the trajectory, the observer moves
along a path that is calculated from an axisymmetric
GRMHD simulation which includes tracer particles. The
tracer particles act like test masses: their velocity is found
by interpolating the local plasma four-velocity (which is
stored in a grid-based data structure) to the position of

the particle. A first-order Euler integration scheme is then
employed to update the position of each particle. For the
camera, we are concerned with particles which are initially
located within the accretion disk, begin to accrete towards
the black hole, and then subsequently leave the simula-
tion domain via the jet. To identify particles which satisfy
all of these conditions we create a large sample of particle
trajectories. The number of injected particles, Ninj, within
a grid cell with index {i, j} is set by two parameters: the
plasma density, ρ , of the bounding cell, and the total mass,
Mtot, within the simulation domain. The number of in-
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Figure 4 Snapshots of the tracer particles in the advection simulation. Left panel: initial distribution of particles inside the initial torus. Middle panel:
snapshot of the advection HARM2D simulation at t = 2000 rg/c. Right panel: later snapshot at t = 4000 rg/c. The two times correspond to the
advection simulation time, i.e., frames 4600–7600 in the resulting movie. The blue square represents the initial position of the tracer particle used for
the camera. The blue curve shows the trajectory corresponding to this tracer particle

jected particles is then calculated as

Ninj(i, j) = Ntot

(
ρ(i, j)Vcell

Mtot

)
, (19)

where the weight factor ensures that only a predefined
number of particles, Ntot, after appropriate weighting, are
then injected into a given simulation cell of volume Vcell =√–g dx1 dx2 dx3, where g is the determinant of the metric
tensor. The code then randomly distributes these particles
inside the simulation cell. The particles are initially in Ke-
plerian orbits and co-rotate with the accretion disk. The
disk then quickly becomes turbulent due to the growth of
the magneto-rotational instability (MRI). As the particles
are advected with the flow they can be classified into three
different types:

(1) accreted particles which leave the simulation at the
inner radius (i.e., plunge into the event horizon) and
remain gravitationally bound,

(2) wind particles which become gravitationally
unbound, travel through weakly magnetised regions
and then exit the simulation at the outer boundary,

(3) accelerated jet particles which are similar to wind
particles but additionally undergo rapid acceleration
within the highly-magnetised jet sheath.

To discriminate between these three types of particle, sev-
eral key hydrodynamical and magnetohydrodynamical cri-
teria are examined. The first criterion is that the hydrody-
namical Bernoulli parameter of the particle satisfies Bern =
–hut > 1.02, where h is the (specific) enthalpy of the accre-
tion flow and ut is the covariant time component of the

four-velocity. When this condition is satisfied the parti-
cle is, by definition, unbound. The boundary transition be-
tween bound and unbound happens at Bern = –hut > 1.00,
but we take a slightly larger value to select the part of the
outflow that has a substantial relativisitc velocity. A simi-
lar value for the Bernoulli parameter was used in e.g. Moś-
cibrodzka et al. (2014); Davelaar et al. (2018b). The sec-
ond criterion is that the particle resides in high magneti-
sation regions where σ = B2/ρ > 0.1, where B :=

√
bμbμ is

the magnetic field strength and bμ is the magnetic field
4-vector. Satisfying this second criterion ensures that the
particle ends up inside the jet sheath. The third criterion is
that the particle’s radial position is at a substantial distance
from the black hole, typically r � 300 rg, at the end of the
simulation.

We simulate the particles with the axisymmetric
GRMHD code HARM2D (Gammie et al. 2003). The simula-
tion begins with Ntot = 105 particles, a simulation domain
size of rout = 1000 rg, and is evolved until tfinal = 4000 rg/c.
The spacetime is that of a Kerr black hole, and the dimen-
sionless spin parameter is set to be a = 0.9375. For this
value of the spin, the black hole (outer) event horizon ra-
dius is rh = 1.344 rg and the simulation inner boundary lies
within rh (i.e., we can track particles inside the event hori-
zon). The specific particle used to initialise the camera tra-
jectory is shown in Fig. 4 (blue square and curve). The full
particle trajectory and velocity profile for all components
uμ are shown in Fig. 5. Rapid variations in the azimuthal
4-velocity, u3, as well as the angular velocity, Ω := u3/u0,
in the right panel of Fig. 5 are consistent with the tightly
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Figure 5 Used tracer-particle trajectory and it’s corresponing velocity. Left panel: the trajectory of the tracer particle that is used to initialise the
camera trajectory. Right panel: the velocity profile of the tracer particle. The velocity peaks when the particle is closest to the black hole, where the
angular velocity is high. The time shown on the x-axis is the time range of the frames used for Scene 3

wound trajectory in the left panel. This trajectory, which
we term “Scene 3”, begins immediately after Scene 2 (i.e.
after frame 4600), and comprises 4000 frames, ending at
frame 8599.

2.4 Radiative-transfer calculations and background images
To create images of an accreting black hole, it is neces-
sary to compute the trajectories of light rays from the ra-
diating plasma to the observer. For imaging applications,
such as the present case, it is most computationally effi-
cient to start the light rays at the observer instead—one
for each pixel in the image the observer sees—and then
trace them backward in time. Given a ray’s trajectory, the
radiative-transfer equation is solved along that trajectory,
in order to compute the intensity seen by the observer.
The radiative-transfer code RAPTOR uses a fourth-order
Runge–Kutta method to integrate the equations of mo-
tion for the light rays (i.e., the geodesic equation). It si-
multaneously solves the radiative-transfer equation using
a semi-analytic scheme (for a more detailed description of
RAPTOR, see Bronzwaer et al. (2018)). The same method-
ology is applied here in order to create images of the black
hole accretion disk, with one small addition. When accre-
tion disks, which tend to be roughly toroidal in shape, are
filmed against a perfectly black background, the resulting
animations fail to convey a natural sense of motion and
scale for the observer as they orbit the black hole. In or-
der to increase the immersiveness of the observer and pro-
vide a physically-realistic sense of scale and motion, the
present work expands on the aforementioned radiative-
transfer calculations by including an additional source of
radiation in the form of a background star field that is pro-
jected onto the celestial sphere surrounding the black hole
and observer.

This is achieved by expressing the intensity received by
the observer in Lorentz-invariant form and integrating this
intensity from the camera to its point of origin within the
plasma, i.e., Eq. (37) in Bronzwaer et al. (2018). This can
then be expressed in integral form (upon including a term
for the background radiation) as

Iν,obs

ν3
obs

=
(

Iν,∞
ν3∞

)
e–τν,obs(λ∞) +

∫ λ∞

λobs

(
jν
ν2

)
e–τν,obs dλ′, (20)

where the optical depth along the ray is calculated as

τν,obs(λ) =
∫ λ

λobs

ναν dλ′. (21)

Here, Iν describes a ray’s specific intensity, ν its frequency,
and jν and αν refer respectively to the plasma emission and
absorption coefficients evaluated along the ray, which is it-
self parametrised by the affine parameter, λ. The subscript
“∞” denotes quantities evaluated at the outer integration
boundary (i.e., far from the black hole), while the subscript
“obs” refers to the observer’s current location. The back-
ground radiation is encoded in the term Iν,∞/ν3∞. The first
term on the right-hand-side of Eq. (20) is constant and rep-
resents the intensity of the background radiation, weighted
by the local optical depth. The second term on the right-
hand-side of Eq. (20) is evaluated at a given observer posi-
tion, λobs, and specifies the accumulated intensity of emit-
ted radiation after taking into account the local emissivity
and absorptivity of the accreting plasma. See Fuerst and
Wu (2004); Younsi et al. (2012); Bronzwaer et al. (2018) for
further details.
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Figure 6 Images at single frequency, background and composite. From left to right, top to bottom: snapshot panels at t = 3000 rg/c for: (i)
background star field only image, (ii) 22 GHz image, (iii) 43 GHz image, (iv) 86 GHz image, (v) 230 GHz image, and (vi) combined (composite) image
of (i)–(v)

A physical description of the radiation is needed for
Iν,∞/ν3∞. Since this quantity is projected onto the celestial
sphere, it is a function of two coordinates (θ̂ , φ̂). Note that
for the ray coordinates, in the limit r → ∞, both θ → θ̂

and φ → φ̂, i.e., space-time is asymptotically flat. We also
note that only rays which exit the simulation volume (as
opposed to rays which plunge towards the horizon) are as-
signed a non-zero background intensity after integration.
In order to evaluate Iν for a given ray, we therefore take the
ray’s (θ ,φ) coordinates after the ray leaves the simulation
volume, and use them as the coordinates (θ̂ , φ̂) on the ce-
lestial sphere. Finally, we transform these coordinates into

pixel coordinates (x, y) of a PNG image in order to evalu-
ate the intensity. The transformation from celestial coor-
dinates to pixel coordinates is given by

x =
⌊

φ̂

2π
W

⌋
and y =

⌊
θ̂

π
H

⌋
, (22)

where 	z
 ≡ floor(z) is the floor function (which outputs
the greatest integer ≤ z), and W and H are the width and
height (in pixels) of the background image, respectively.

Using the scheme described above, it is possible to fold
the background radiation field directly into the radiative
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Figure 7 Movie snapshots from Scene 1. The simulation time (in units of rg/c) is shown in the upper-left corner of all panels. From top to bottom:
Scene 1 begins at frame 1600, where accretion onto the black hole has not yet begun, which can be seen as the faint, stationary equilibrium
accretion torus configuration in the centre of the image. By frame 2300 accretion has begun (see also Fig. 8) and the dim jet (upper half of image)
and dimmer counter jet (lower half of image) propagate outwards through the ambient medium. At frame 3000 the jet has propagated further
outwards, and angular momentum transport has shifted torus material outward, as can be seen by the increased angular size of the inner accretion
flow. The black hole shadow is not visible since the accretion rate has yet to reach a quasi-stationary state

transfer calculations of the accretion disk plasma. A sec-
ond approach is to render separate movies for both the
background and for the plasma, create a composite im-
age for all corresponding time frames between the two
movies in post-processing, and then create the new com-
posite movie from the composite images. We adopt the
second approach in all results shown in this paper.

We have chosen a background that is obtained from real
astronomical star data from the Tycho 2 catalogue which
are not in the Galactic Plane. The original equirectangu-

lar RGB 3K image was generated by Scott (2008) and con-
verted to a greyscale 2K image.

2.5 Plasma and radiation models
In this work, we seek to model the SMBH Sgr A*. To this
end we use a black hole mass of MBH = 4.0 × 106 M�
(Gillessen et al. 2009), and a dimensionless spin parameter
of a = 0.9375, consistent with the particle simulation. The
plasma flow was simulated with the GRMHD code BHAC
(Porth et al. 2017). The simulation domain had an outer



Davelaar et al. Computational Astrophysics and Cosmology             (2018) 5:1 Page 12 of 17

Figure 8 Accretion rate as a function of time. Simulation accretion
rate as a function of time (in code units). At t = 2500 the MRI start to
saturate. The time shown on the x-axis is the time of the frames used
for “Scene 2” and “Scene 3”

radius of router = 1000 rg. The simulation is initialised with
a Fishbone–Moncrief torus (Fishbone and Moncrief 1976)
with an inner radius of rinner = 6 rg, and with a pressure
maximum at rmax = 12 rg. Magnetic fields were inserted as
poloidal loops that follow iso-contours of density, and the
initial magnetisation was low, i.e., β = Pgas/B2 = 100, where
Pgas is the gas pressure of the plasma. The simulation was
performed in three dimensions, with a resolution of 256,
128, 128 cells in the r, θ and φ directions, respectively. We
simulated the flow up to t = 7000 rg/c.

The GRMHD simulation only simulates the dynamically-
important ions (protons). We, therefore, require a pre-
scription for the radiatively-important electrons in order
to compute the observed emission. Most radiative mod-
els for Sgr A* or M87 either assume that the coupling
between the temperatures of the electrons and protons
is constant or parameterised based on plasma variabels,
see e.g. Goldston et al. (2005); Noble et al. (2007); Moś-
cibrodzka et al. (2009); Dexter et al. (2010); Shcherbakov
et al. (2012); Mościbrodzka and Falcke (2013); Mości-
brodzka et al. (2014); Chan et al. (2015a, 2015b); Gold et al.
(2017). In this work we use, an electron model by Mości-
brodzka et al. (2014) where the electrons are cold inside the
accretion disk and hot inside the highly magnetized out-
flows. For the electron distribution function, we adopt a
thermal distribution, where Davelaar et al. (2018b) showed
that this model accurately describes the quiescent state of
Sgr A*. The used model (Mościbrodzka et al. 2014) is capa-
ble of recovering the observational parameters of Sgr A*,
such as radio fluxes and intrinsic source sizes (Falcke et al.
2000; Bower et al. 2004, 2014; Doeleman et al. 2008).

We calculated the synthetic images at four different ra-
dio frequencies: 22 GHz (1.2 cm), 43 GHz (7 mm), 86 GHz
(3 mm), and 230 GHz (1.3 mm). These frequencies were

chosen since they correspond to the frequencies at which,
e.g., the Very Long Baseline Array (VLBA) (1.2 mm, 7 mm,
3 mm), Global mm-VLBI Array (GMVA) (3 mm) and the
Event Horizon Telescope (EHT) (1.3 mm) operate. After
ray-tracing these frequencies were converted into separate
PNG image files, where distinct colourmaps were chosen
for each of the four frequencies. In post-processing, these
images were then combined into a single image by averag-
ing over the RGB channels of the four different input im-
ages. A star-field background was also included to serve
as a reference point for the observer during their motion.
This star-field background was rendered separately from
the radio images, although the opacity at 22 GHz was used
to obscure stars located behind the accretion disk. This
background was then also averaged together with the ra-
dio images using the same RGB channel averaging. The
four separate frequencies, the star-field background, and
the resulting combined image are presented in Fig. 6.

3 VR movie
The resulting VR movie contains 8600 frames at a reso-
lution of 2000 × 1000 pixels. As a proof of concept, this
resolution was chosen to balance image quality and com-
putational resources. Current VR headsets also upscale the
provided resolution with interpolation routines. We tested
the resolution with the Oculus VR headset, which turned
out to be sufficient. Since the provided methods are not
limited by the resolution, a larger resolution can in prin-
ciple be achieved. The movie is available on Youtube VR
(Davelaar et al. 2018a). In this section, we discuss several
snapshots from this movie.

The first set of snapshots is shown in Fig. 7. In Fig. 7 we
show a set of snapshots from Scene 1 (1600, 2300, 3000),
matter starts to accrete onto the black hole and the jet
is launched. The jet then propagates through the ambi-
ent medium of the simulation, forming a collimated funnel
that is mainly visible at lower frequencies. Since the accre-
tion rate peaks at this point in the simulation (see Fig. 8),
the black-hole shadow is barely visible.

In Fig. 9 we show snapshots from Scene 2 (3700, 4050,
4400), the jet propagates outward to the boundary of our
simulation domain, the accretion rate settles and the black
hole shadow becomes visible.

In Fig. 10 we show snapshot from Scene 3. When the ob-
server moves along with the flow in Scene 3 (5100, 5800,
6150), small hot blobs of plasma orbiting the black hole are
distinguishable. At closest approach (around 6 rg, frame
6150), the scene changes rapidly. This is due not only to
rapid rotation of the black hole but also to the rapid de-
crease of observed flux. It is hard to distinguish individual
stars and the only observable emission is at 230 GHz. At
the end of Scene 3 (7200, 7900, 8599) the observer exits
the accretion disk via the jet, whereafter a rapid increase
in radial velocity is clearly seen.
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Figure 9 Movie snapshots from Scene 2. By frame 3700 the MRI has begun to saturate and the accretion rate reaches a quasi-stationary state. At
frame 4050 the jet and counter-jet have propagated further away from the black hole and reached the boundary of our simulation domain. Due to
the steadier accretion rate, by frame 4400 the central region surrounding the event horizon becomes cooler and more optically thin. The upper-half
of the black-hole shadow is now visible

To obtain a better quantitative understanding of the
movie we also calculate the total bolometric luminosity as
received by the observer’s camera. This is shown in the top
panel of Fig. 11. At 6150 a decrease in luminosity is ev-
ident at the three lowest frequencies, which corresponds
to where the observer is closest to the black hole event
horizon and has entered the optically-thick accretion disk.
A magnified version of this Figure in the optically-thick
part is shown in the bottom panel of Fig. 11. A frame cor-
responding to this particular moment is shown in Fig. 10,
panel 6150. At closest approach, the total luminosity de-

tected at 230 GHz peaks, and the observer is exposed to
≈ 25L�.

4 Discussion and conclusion
In this work, we have detailed our methods for visualising
the surroundings of accreting black holes in virtual reality.
We presented a visualisation of a three-dimensional fully-
general-relativistic accreting black hole simulation in a full
360◦ VR movie with radiative models based on physically-
realistic GRMHD plasma simulations. In order to produce
representative images, the radiative-transfer capabilities of
our code RAPTOR were extended to include background
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Figure 10 Movie snapshots from Scene 3. The observer now begins their journey through the accretion flow (panels with frames 5100–6150),
before being advected away from the black hole via the large-scale jet (panels with frames 7200–8599). At frame 6150 the observer is at their point
of closest approach to the black hole, where the incident flux is as high as ≈ 25L� . This region is highly optically thick, completely obscuring the
observer’s view of the black hole shadow. As the observer is advected further away, by frame 8599 the angular size of the black hole and the
surrounding accretion flow is greatly reduced and appears almost point-like

starlight and an observer in an arbitrary state of motion.
To model the emission emerging from the vicinity of a
black hole we coupled the GRMHD simulation with our
radiative-transfer code to produce a VR movie based on
our recent models for Sgr A* (Mościbrodzka et al. 2014;
Davelaar et al. 2018b). These methods can be applied to
accreting black holes of any size, so long as radiation feed-
back onto the accretion flow has a negligible impact on the
flow’s magnetohydrodynamical properties.

The trajectory of the camera consisted of two phases:
a hovering observer and an advected observer. For this
second phase, we used an axisymmetric GRMHD simu-
lation, in contrast to the plasma simulation used to cal-
culate the radiation, which was fully-three-dimensional.
This choice, whilst scientifically less accurate, was inten-
tional and somewhat necessary. Turbulent features in the
φ direction were omitted since they can be nauseating to
watch in VR environments and commonly lead to mo-
tion sickness. A composition of starfield and accretion
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Figure 11 Luminosity as a function of time. Top panel: total
luminosity collected at the camera at each time step. Bottom panel:
magnified view of the time range 6000–6400 rg/c, where the camera
passes through the optically thick part of the accreting plasma

flow images at four frequencies was then used to create a
movie, consisting of 8600 frames, which is freely available
on YouTube.

This movie couples GRMHD simulations with GRRT
post-processing in VR. Since we do not make any strong
a-priori assumptions regarding the field-of-view of the ob-
server, we can calculate the full radiation field measured at
a specific point in the accretion disk, where we include all
GR effects. This enabled us to calculate light curves of the
total measured luminosity at multiple frequency bands at
the position of a particle being advected in the flow. This
way of calculating the full self-irradiation of the disk is of
potential interest in, e.g., studies of X-ray reflection mod-
els in AGN, or coupling to GRMHD simulation to calculate
the proper radiative feedback onto an emitting, absorbing
(and even scattering) plasma in GR in a self-consistent way.

Finally, beyond the aforementioned scientific applica-
tions, VR represents a new medium for scientific visual-
isation which can be used, as demonstrated in this work,
to investigate the emission that an observer would mea-

sure from inside the accretion flow. It is natural, and of
contemporary interest even in the film industry (see e.g.
James et al. 2015a, 2015b) to ask the question as to what
an observer would see if they were in the immediate vicin-
ity of a black hole. In this work, we have sought to address
this question directly, by using state-of-the-art numerical
techniques and astrophysical models in a physically-self-
consistent manner. Given the EHTC is anticipated to ob-
tain images of the black hole shadows in Sgr A* and M87
in the near future, the calculations we have presented are
timely. The VR movies presented in this work also provide
an intuitive and interactive way to communicate black hole
physics to wider audiences, serving as a useful educational
tool.
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