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ABSTRACT

Context. Observational efforts to image the immediate environment of a black hole at the scale of the event horizon benefit from the
development of efficient imaging codes that are capable of producing synthetic data, which may be compared with observational data.
Aims. We aim to present RAPTOR, a new public code that produces accurate images, animations, and spectra of relativistic plasmas
in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer
calculations along the rays. The code is compatible with any analytical or numerical spacetime. It is hardware-agnostic and may be
compiled and run both on GPUs and CPUs.
Methods. We describe the algorithms used in RAPTOR and test the code’s performance. We have performed a detailed comparison of
RAPTOR output with that of other radiative-transfer codes and demonstrate convergence of the results. We then applied RAPTOR to
study accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-
hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fast-light and
slow-light paradigms.
Results. Using RAPTOR to produce synthetic images and light curves of a GRMHD model of an accreting black hole, we find that the
relative difference between fast-light and slow-light light curves is less than 5%. Using two distinct radiative-transfer codes to process
the same data, we find integrated flux densities with a relative difference less than 0.01%.
Conclusions. For two-dimensional GRMHD models, such as those examined in this paper, the fast-light approximation suffices as
long as errors of a few percent are acceptable. The convergence of the results of two different codes demonstrates that they are, at a
minimum, consistent.
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1. Introduction

Testing Einstein’s general theory of relativity (GR) in the strong-
field limit remains a difficult challenge. Recently, gravitational
waves have been used to test GR’s predictions concerning merg-
ing black holes (see, e.g., Abbott et al. 2016), whose observations
are consistent with GR and the existence of black holes (Chirenti
& Rezzolla 2016). Building on Cunningham & Bardeen (1972),
Falcke et al. (2000) suggested that a black hole’s “shadow”
may be used to probe the accuracy of GR in the strong-field
limit; observational efforts using millimeter-wavelength very
long baseline interferometry (mm-VLBI) techniques are now
underway (Falcke et al. 2000; Doeleman et al. 2008; Doeleman
et al. 2012; Fish et al. 2016; Johnson et al. 2015; Goddi et al.
2016).

Prime motivating targets for this research are the puta-
tive accreting supermassive black holes (SMBHs) at the center
of the Milky Way (Sagittarius A*, hereafter Sgr A*; Falcke
& Markoff 2013; Genzel et al. 2010) and M 87 (Doeleman
et al. 2012). The first attempts to predict the electromag-
netic appearance of black holes were made in the 1970s

? The public version of RAPTOR is available at the following URL:
https://github.com/tbronzwaer/raptor

(Cunningham & Bardeen 1972; Luminet 1979; Viergutz 1993),
however, due to the limited observational capacity of that era, it
was considered a somewhat academic exercise. With the advent
of mm-VLBI techniques, and the potential to image the black-
hole shadows in Sgr A*, efficient and flexible GR ray-tracing
codes are becoming a key component of image-based tests of
GR in the strong-field limit. It is no longer sufficient to calculate
the appearance of thin disks or background stars, but rather, one
has to consider a black hole surrounded by a heterogeneous, par-
tially optically thick plasma. In order to accurately reproduce the
appearance and spectrum of such a source to a distant observer,
the effects of a strong gravitational field (gravitational lensing,
redshift, and relativistic boosting) must be taken into account.
For these reasons, creating synthetic observational data from
physical models of the SMBH and its environment is an impor-
tant component of the theoretical study of objects like Sgr A*.

Besides the study of SMBH’s, any astrophysical problem that
involves radiative transfer and strong gravity could be tackled
by general-relativistic radiative transfer codes. One example of
such alternative applications is a binary black-hole system. For
such systems, no analytical spacetime is known, and a numeri-
cal spacetime must be employed. Another example is the study
of radiative transfer near neutron stars, for which, again, no
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exact metric is known (although it may be approximated by the
Kerr metric, see, e.g., Parfrey & Tchekhovskoy 2017). Finally,
a general-relativistic radiative transfer code could be applied
to problems that do not involve compact objects, such as the
propagation of radiation in an expanding FRW-spacetime.

Certain spacetimes, such as the Schwarzschild spacetime,
are amenable to analytical solution of the geodesic equation
(Beloborodov 2002; De Falco et al. 2016). A semi-analytical
solution to the geodesic equation in the Kerr spacetime is pre-
sented by Dexter & Agol (2009). Analytical solutions to the
geodesic equation near compact objects have also been stud-
ied in the context of, for example, radiating pulsars (Poutanen
& Beloborodov 2006). Analytically or semi-analytically com-
puted null geodesics have the important advantage of excellent
spatial accuracy that is independent of integration step size. On
the other hand, the analytical formulae may be expensive to
evaluate, and thus a numerical code may, in some cases, offer
superior performance when sensitive radiative-transfer calcula-
tions (which require a relatively small spatial integration step
size) are included. Additionally, analytical codes are restricted
to the set of spacetimes for which the metric and connection are
known analytically.

Numerical radiative-transfer codes, capable of producing
images and/or spectra from general relativistic magneto-
hydrodynamical (GRMHD) simulations by performing
radiative-transfer calculations in strong gravity, have been
studied in a number of works (Broderick 2006; Noble et al.
2007; Dexter & Agol 2009; Shcherbakov & Huang 2011;
Chan et al. 2013; Dexter 2016). Dexter (2016)’s grtrans is a
CPU-based code that uses a semi-analytic method to construct
geodesics and offers polarized radiative transfer in the Kerr
spacetime; Moscibrodzka & Gammie (2018)’s ipole is a
numerical code that offers the same functionality, but for general
spacetimes. Chan et al. (2013)’s GRay is a fully numerical
GPU-based CUDA code capable of handling arbitrary spacetime
metrics; it was recently succeeded by GRay2, a general-purpose
geodesic integrator for the Kerr spacetime (Chan et al. 2017).
Takahashi & Umemura (2017) have recently presented ARTIST,
a code that is not based on a ray-tracing algorithm, but which
is capable of reproducing radiation fields (wave fronts) in the
Kerr spacetime, with the aim of including radiation pressure in
GRMHD simulations. Although both GPU and CPU codes that
perform radiative-transfer calculations are available, existing
codes are specialized to one or the other. Many are also restricted
to hardware from a single manufacturer, so that deciding which
code to use may strongly depend on the hardware available
locally.

In this paper, we present a new code, RAPTOR. It was
designed with two goals in mind: minimizing the number of
physical assumptions, by supporting arbitrary spacetimes and
time-dependent radiative transfer, and maximizing flexibility
of use, by supporting all commonly available CPU and GPU
hardware. Although the code was developed with the science
case described above in mind, it may be readily applied to
any astrophysical problem involving radiative transfer in strong
gravity, as it is equipped to deal with numerical as well as
analytical metrics. One alternative application for the code
that we have explored in particular concerns visualisation of
black holes in virtual reality, a project that has applications
in outreach and intuitive understanding of black hole accretion
(Davelaar et al., in prep.). Presently, we only compute the specific
intensity as seen by the observer. The next step, which involves
polarized radiative transfer, will be covered in a future paper.
In this work, we demonstrate correct operation of RAPTOR and

couple it to GRMHD simulation data from BHAC (Porth et al.
2017) and HARM2D (Gammie et al. 2003) using radiative-transfer
models (Mościbrodzka et al. 2009). We also perform a detailed
comparison with the radiative-transfer code BHOSS (Younsi, in
prep.) by specifying identical initial conditions in both codes and
comparing the resulting images. Finally, in order to evaluate the
accuracy of theoretical predictions of the appearance and time-
variability of SMBH accretion flows, we apply our new code to
studying the slow-light paradigm, in which the assumption of
staticity of GRMHD data is relaxed, in the context of accreting
black holes.

The paper is organized as follows: in Sect. 2, we present the
governing equations for calculating (null) geodesics in a curved
spacetime, derive two algorithms for solving them numerically,
and test our implementations. In Sect. 3, we discuss the covari-
ant radiative-transfer equation and the accompanying numerical
algorithms for solving it. Section 4 contains a library of verifi-
cation and performance results for the geodesic and radiative-
transfer integrators. In Sect. 5, we apply RAPTOR to investigate
the slow-light paradigm for imaging GRMHD simulations.

2. Equations of motion for light rays

The appearance and spectrum of an accreting black hole
recorded by a distant observer are strongly affected by gravita-
tional effects such as lensing and redshift. In order to construct
an accurate image or spectrum, these effects must be taken into
account. Relativistic ray-tracing algorithms solve the equations
of motion for light in curved spacetime, automatically taking into
account all gravitational effects. Such algorithms are discussed
in this section.

2.1. Geodesic equation

In Newtonian physics, test particles move along straight lines
in the absence of any force. Analogously, in GR, test particles
move along so-called geodesics when in free fall, in other words,
when acted upon by gravity only. Furthermore, in GR gravita-
tional effects on test particles are represented through curvature
of the spacetime in which the particles move.

The structure of spacetime in GR is described by the sym-
metric rank-2 metric tensor gµν and the motion of test particles
is described by the geodesic equation

d2xα

ds2 = −Γαµν
dxµ

ds
dxν

ds
. (1)

Here, xα is the particle’s position; s is a scalar parameter of
the particle’s world line, and Γαµν is the “connection” of the
spacetime through which the particle propagates. The connec-
tion depends on first derivatives of the metric and is given
by

Γαµν =
1
2
gαρ

[
∂µgνρ + ∂νgµρ − ∂ρgµν

]
. (2)

Massive particles move along “timelike” geodesics. Adopting
the Lorentzian metric signature (−,+,+,+) and geometrized
units, so that G = c = 1, the spacetime interval for massive
particles of unit mass is negative and unitary:

gµν
dxµ

dτ
dxν

dτ
= −1 , (3)

where τ is the proper time measured by an observer co-moving
with the particle. Photons, which are massless and always travel
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at the speed of light, travel along “null” geodesics with zero
spacetime interval:

gµν
dxµ

dλ
dxν

dλ
= 0 . (4)

In this case, the geodesic is parametrized by a so-called affine
parameter λ, as no proper time elapses for photons. From now
on, we only consider null geodesics.

2.2. Numerical integration of the geodesic equation

In this section we present two algorithms to solve Eq. (4)
numerically, and discuss a number of tests of the integrator’s
performance.

Since the geodesic Eq. (1) represents a set of four coupled
second-order ordinary differential equations (ODE’s), we must
specify both an initial position xα0 and an initial contravariant
four-momentum vector, which in the case of radiation is the so-
called wave vector kα0 , to obtain the full geodesic by numerical
integration. As a first step, we can write Eq. (1) as a system of
eight coupled first-order ODE’s:

dxα

dλ
= kα, (5)

dkα

dλ
= −Γαµνk

µkν. (6)

We must now choose an appropriate integration scheme to solve
Eq. (5). Since we aim to strike a balance between accuracy and
efficiency, we present two alternatives, one of which is more
accurate while the other is less computationally expensive.

2.2.1. Runge-Kutta integrator

We first choose the popular 4th-order Runge-Kutta integration
method (RK4) to solve Eq. (5) numerically. In the case of
the geodesic equation there are eight dependent variables (the
components of xα and kα), and we must evaluate 32 “update
coefficients" for the RK4 integration:

C1,xα = ∆λ · kα, (7)

C2,xα = ∆λ ·
(
kα + 1

2C1,xα
)
, (8)

C3,xα = ∆λ ·
(
kα + 1

2C2,xα
)
, (9)

C4,xα = ∆λ · (kα + C3,xα
)
, (10)

C1,kα = ∆λ · f α
(
xi, ki

)
, (11)

C2,kα = ∆λ · f α
(
xi + 1

2C1,xi , ki + 1
2C1,ki

)
, (12)

C3,kα = ∆λ · f α
(
xi + 1

2C2,xi , ki + 1
2C2,ki

)
, (13)

C4,kα = ∆λ · f α
(
xi + C3,xi , ki + C3,ki

)
, (14)

where f α represents the right-hand side of Eq. 1, and i is a
shorthand indicating that all components of xα and kα appear as
variables of f α, i.e. f α

(
xi, ki

)
= f α

(
x1, x2, x3, x4, k1, k2, k3, k4

)
.

Having calculated all update coefficients using Eq. 14, we can
compute the new values for xα and kα as follows:

xαnew = xα + 1
6
(
C1,xα + 2C2,xα + 2C3,xα + C4,xα

)
+ O

(
∆λ5

)
, (15)

kαnew = kα + 1
6
(
C1,kα + 2C2,kα + 2C3,kα + C4,kα

)
+ O

(
∆λ5

)
. (16)

2.2.2. Verlet integrator

Although the RK4 integrator is accurate, more efficient inte-
grators exist. Evaluating the connection coefficients is the most
computationally expensive operation in our geodesic integration
algorithms; structuring our code in this manner allows us to
maintain a general scheme that is capable of interfacing with
GRMHD simulations in different coordinate systems, as well
as of handling spacetimes that are completely arbitrary such
as those in the framework of Rezzolla & Zhidenko (2014) and
Konoplya et al. (2016), and recently employed by Younsi et al.
(2016). Dolence et al. (2009) have presented the velocity Ver-
let algorithm (Swope et al. 1982) as a more efficient alternative
to the RK4 algorithm, as it relies on fewer evaluations of the
connection coefficients:

xαn+1 = xαn + kαn ∆λ +
1
2

(
dkα

dλ

)

n
(∆λ)2, (17)

kαn+1,p = kαn +

(
dkα

dλ

)

n
∆λ , (18)

(
dkα

dλ

)

n+1
= −Γαµν

(
xαn+1

)
kµn+1,p kνn+1,p , (19)

kαn+1 = kαn +
1
2

[(
dkα

dλ

)

n
+

(
dkα

dλ

)

n+1

]
∆λ . (20)

The accuracy of this algorithm can be improved by using the
result of Eq. (20) to recompute the derivative (Eq. (19)) with
kµn+1,p = kµn+1, and then reevaluating Eq. (20).

In this paper we have restricted our investigations to the Kerr
spacetime, which represents an uncharged black hole with (in the
general case) non-zero angular momentum characterized by the
spin parameter a := J/M2, where J is the black-hole’s angular
momentum and M its mass. Near the black-hole event horizon,
as well as near the symmetry axis (the spin axis), numerical inte-
gration becomes difficult due to coordinate singularities. The
following adaptive step-size routine introduced by Noble et al.
(2007) and Dolence et al. (2009) is adopted for accuracy and effi-
ciency in difficult regions by reducing the step-size ∆λ in these
cases:

dλ =
1

|dλx1 |−1 + |dλx2 |−1 + |dλx3 |−1 , (21)

where

dλx1 := ε / (|kr | + δ), (22)

dλx2 := ε min
(
xθ, 1 − xθ

)
/
(∣∣∣kθ

∣∣∣ + δ
)
, (23)

dλx3 := ε /
(∣∣∣kφ

∣∣∣ + δ
)
. (24)

Here, δ is a very small (positive) number that protects against
dividing by 0, while ε is a (positive) scaling parameter by which
one can influence the scale of all steps.

2.3. Initial conditions: the virtual camera

Specific to the case of a Kerr black hole, consider a distant
observer whose inclination angle with respect to the black-hole
rotation axis is given by i so that an inclination angle of 90◦
means the observer is in the black-hole equatorial plane, while
an inclination angle of 0◦ means that we are looking at the black
hole along the direction of its spin axis. In the observer’s image
plane, which is oriented so that its vertical axis is aligned with
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the black-hole spin axis (for any non-zero inclination angle), we
define the impact parameters α (the distance from the black-hole
rotation axis) and β (the distance in the direction perpendic-
ular to α). The wave vector kα is then constructed following
Cunningham & Bardeen (1972) as

L = −αE
√

1 − cos2 i , (25)

Q = E2
[
β2 + cos2 i

(
α2 − 1

)]
, (26)

kt = −E, (27)
kφ = L, (28)

kθ = sign(β)
√∣∣∣Q − L2 cot2 θ + E2 cos2 θ

∣∣∣ , (29)

where E is the wave vector’s total energy, L is the projection of
the angular momentum parallel to the black- hole spin axis, and
Q is the Carter constant (Carter 1968). The radial component of
the wave vector, kr, is fixed by demanding that it is a null vector,
that is, kαkα = 0 (kr may be positive or negative, correspond-
ing to out- and ingoing rays, respectively). Boyer-Lindquist (BL)
coordinates (Boyer & Lindquist 1967) are used to construct the
initial wave vector.

2.4. Coordinate systems and transformations

One of the main purposes of RAPTOR is to integrate the radiative-
transfer problems generic black-hole spacetimes such as those
proposed in alternative to GR theories of gravity (Rezzolla
& Zhidenko 2014). Hence, null-geodesic integration and the
radiative-transfer equations described in the next section are for-
mulated in a way that is independent of the choice of coordinate
system or of the geometry of the spacetime. In view of this,
RAPTOR has been constructed so as to switch easily among var-
ious grids and geometries. In particular, when considering the
solution of the radiative-transfer equation near black holes, it is
important that the coordinate system is accurate near the horizon,
and compatible with GRMHD simulations; the latter customar-
ily adopt a spherical-polar coordinate system using a logarithmic
scale for the radial coordinate and a denser polar coordinate
mapping near the equatorial plane (so-called modified coordi-
nate systems, see, e.g., Gammie et al. 2003). In this paper, we
utilized four different coordinate systems for the Kerr space-
time, namely: the aforementioned Boyer-Lindquist coordinates,
the modified Boyer-Lindquist (MBL) coordinates, the logarith-
mic Kerr-Schild (KS) coordinates (Kerr & Schild 1965), and the
modified Kerr-Schild (MKS) coordinates (Gammie et al. 2003).
Some of the transformation laws between these coordinate sys-
tems are given explicitly in Appendix A, while a test of the code
performance is presented in Appendix B.

3. Radiative transfer

Having previously computed the relevant null geodesics, an
algorithm is needed that will perform radiative-transfer calcu-
lations along them. In this section we introduce the relevant
equations. Our present algorithm does not include radiation
refraction effects due to the plasma (which is a good approx-
imation if the radiation frequency is greater than the plasma
frequency, νp = 8980 n1/2

e , where ne is the electron number
density), all forms of scattering, and polarization although all
of these effects can be incorporated in a ray-tracing simula-
tions (see, e.g., Broderick 2006; Dolence et al. 2009; or Dexter
2016). However, RAPTOR integrates the radiative transfer equa-
tions taking into account changes in the plasma structure during

the light transport (Sect. 5), which is usually neglected. Hence,
our code is suitable for first-principles study of time variability of
mock observations of accreting black holes or any other compact
objects surrounded by plasma.

3.1. Covariant radiative-transfer equation

The transfer equation for the Lorentz invariant quantity Iν/ν3,
where Iν is the specific intensity of radiation at frequency ν, is
given by (Lindquist 1966):

d
dλ

( Iν
ν3

)
=

jν
ν2 − ναν

( Iν
ν3

)
, (30)

where again λ is the affine parameter, which we defined to be
increasing as the ray travels from the plasma toward the observer,
ν is the photon’s frequency, jν is the plasma emission coefficient,
and αν is the plasma absorptivity. We note that all of these physi-
cal quantities are computed in an inertial frame that is co-moving
with the plasma (hereafter the fluid frame). In the present case
of unpolarized radiative transfer, the necessary transformation
between frames can be achieved simply by computing the ray’s
frequency in the fluid frame:

ν = −kαuα , (31)

and using ν to relate the fluid frame emission and absorption
coefficients to their Lorentz-invariant counterparts, so that we
do not have to construct the fluid frame explicitly, as is the case
with polarized radiative transfer.

The intensity seen by the observer, Iν,obs = Iν (λobs), is then
obtained by integrating Eq. (30) from λ0 to λobs and subse-
quently converting from the Lorentz-invariant quantity Iν/ν3 to
the specific intensity in the observer frame using

Iν,obs =
Iν
ν3 ν

3
obs . (32)

Although it is possible to integrate Eq. (30) directly, more
accurate numerical results can be obtained by employing the for-
mal solution to the transfer equation (see e.g., Dexter & Agol
2009), which recasts Iν as a function of the optical depth τν given
by:

τν (λ) =

∫ λ

λ0

νανdλ′ . (33)

We note that the optical depth, which describes the fraction
of photons that pass through a certain absorbing volume, is a
Lorentz-invariant quantity. The formal solution to the radiative-
transfer equation is then

Iν
ν3 (τν) =

Iν
ν3

(
τν,0

)
exp (−τν) +

∫ τν

τν,0

exp− (
τν − τ′ν

) jν
ν3αν

dτ′ν ,

(34)

where τν,0 defines the location along the null geodesic where
integration begins. We can repeatedly solve Eq. (34) for each
integration step. Assuming that jν is constant over the step, we
obtain

Iν
ν3 (τν) =

Iν
ν3

(
τν,0

)
exp (−τν) +

jν
ν3αν

(
1 − exp (−τν)) . (35)

The reason for which using Eq. (35) yields better numeri-
cal results than direct integration of Eq. (30) with, for example,
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results. Equation (34), on the other hand, contains an integrand
that is always positive.

An even more numerically advantageous method for calcu-
lating the intensity seen by the observer can be obtained by in-
tegrating Iν,obs in the opposite direction along the null geodesic
with respect to the previous schemes, in other words, from the
observer toward the plasma, by splitting Eq. (35) into separate
equations for Iν and τν (Younsi et al. 2012). In fact, in this di-
rection, Iν,obs must be a monotonically increasing function of the
affine parameter λ̄, which we defined to increase in the opposite
spatial direction of the previously used affine parameter λ (λ̄ in-
creases as the ray travels further away from the observer). This
is because the specific intensity of the ray seen by the observer
can only increase, never decrease, by continued integration fur-
ther away from the camera (see Figs. 1 and 2 for an illustration
of the difference between the two strategies).

This method offers three additional advantages over the two
methods described above. Firstly, it allows simultaneous integra-
tion of the null geodesic and of the specific intensity, as well as
cutting off the null-geodesic integration when the optical depth
of the material between the current location and the camera be-
comes higher than a threshold value (any radiation emitted be-
yond this point will be severely attenuated and thus be negligi-
ble for the observer). Secondly, it relieves the need for a data
structure to store the geodesic in memory before performing
radiative-transfer calculations (since we simply integrate Iν,obs
along with the geodesic itself). Thirdly, with this method, it is
possible to compute appropriate integration step-sizes for both
the null geodesic and the radiative-transfer integration, and then
pick the minimum of the two. This avoids situations where the
null-geodesic integration, performed separately as if in a vac-
uum, takes a large step through a plasma that is optically thick at
a range of frequencies of interest, yielding inaccurate radiative-
transfer calculations.

An expression for Iν,obs can be constructed by considering a
ray travelling backward from the camera into a radiating plasma.
At each point along the ray’s path, we computed the optical
depth of the material between the current location, λ, and the
observer’s location, λobs as

τν,obs (λ) =

∫ λ

λobs

αν(λ′) ν dλ′ . (36)

We can then compute the local invariant emission coefficient,(
jν/ν2

)
, and scale it by exp (−τobs), resulting in the following

expression for the contribution of point λ on the geodesic to the
total observed intensity:

d
dλ̄


Iν,obs

ν3
obs

 =
jν
ν2 exp

(
−τν,obs

(
λ̄
))
. (37)

Integrating over the geodesic then yields the total invariant inten-
sity at the observer, Iν,obs/ν

3
obs, which is converted to Iν,obs using

Eq. (32) as before.
We have implemented all three integration strategies dis-

cussed in this section in RAPTOR and found that integration of
Eq. (37) produces the most accurate results in the least amount
of time.

4. Code verification

Since the program consists of two parts, namely the integra-
tion of the geodesics and the integration of the radiative-transfer
equation, correct results must be verified for both. In Section 4.1
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Fig. 1: Plots of radiative-transfer variables along a particular null
geodesic that intersects a radiating plasma near a Kerr black hole
(see Fig. 2). Top: plots of the local specific intensity Iν (dashed
red curve), which is computed by integrating Eq. (34) in the di-
rection of increasing affine parameter λ, and of the specific in-
tensity seen by the observer, Iν,obs (solid black curve), which is
computed by integrating Eq. (37) in the direction of decreasing
λ. The intensity is normalized with respect to the observed in-
tensity in both cases, so that we expect both curves to approach
unity with continued integration, which is illustrated using the
blue guideline. We note that Iν is a non-monotonic function of λ
while Iν,obs is a monotonic function of λ. We also note that for
Iν,obs and τν,obs, integration proceeds from right to left in these
plots, and that Iν,obs converges much faster than Iν. Bottom: plots
of the optical depth for the same ray.

we verify the correct integration of null geodesics, while in Sec-
tion 4.2 we focus on the radiative-transfer computations.

4.1. Verification of geodesic integration

In his seminal work, Carter (1968) presented three conserved
quantities associated with the orbits of photons (or particles) in
the Kerr spacetime:

E = −kt, (38)
L = kφ, (39)

Q = k2
θ + cos2 θ

[
a2

(
µ2 − k2

t

)
+ k2

φ/ sin2 θ
]
, (40)

where Q is the so-called Carter constant. Figure 3 shows, in
terms of the L1-error norms, that these quantities are conserved
as expected and that the errors converge respectively to second
and fourth order in step-size for the Verlet and RK4 algorithms,
for all coordinate systems.

Another interesting test for the geodesic integration comes
from considering those null geodesics in the Kerr spacetime
that have a complex morphology, looping around the horizon
many times before plunging in or escaping. Such pathological
geodesics are a good test for the code’s performance in a worst-
case scenario because even small errors lead to deviations (e.g.,
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Fig. 1. Radiative-transfer variables along a particular null geodesic that
intersects a radiating plasma near a Kerr black hole (see Fig. 2). Top:
local specific intensity Iν (dashed red curve), which is computed by inte-
grating Eq. (34) in the direction of increasing affine parameter λ, and
of the specific intensity seen by the observer, Iν,obs (solid black curve),
which is computed by integrating Eq. (37) in the direction of decreasing
λ. The intensity is normalized with respect to the observed intensity in
both cases, so that we expect both curves to approach unity with contin-
ued integration, which is illustrated using the blue guideline. We note
that Iν is a non-monotonic function of λ while Iν,obs is a monotonic func-
tion of λ. We also note that for Iν,obs and τν,obs, integration proceeds from
right to left in these plots, and that Iν,obs converges much faster than Iν.
Bottom: optical depth for the same ray.

an explicit Euler scheme, is that in the latter case, the intensity
may become negative if we take too large an integration step
whenever jν/ν2 < ναν

(
Iν/ν3

)
, thus producing grossly incorrect

results. Equation (34), on the other hand, contains an integrand
that is always positive.

An even more numerically advantageous method for calcu-
lating the intensity seen by the observer can be obtained by
integrating Iν,obs in the opposite direction along the null geodesic
with respect to the previous schemes, in other words, from the
observer toward the plasma, by splitting Eq. (35) into separate
equations for Iν and τν (Younsi et al. 2012). In fact, in this direc-
tion, Iν,obs must be a monotonically increasing function of the
affine parameter λ̄, which we defined to increase in the oppo-
site spatial direction of the previously used affine parameter λ (λ̄
increases as the ray travels further away from the observer). This
is because the specific intensity of the ray seen by the observer
can only increase, never decrease, by continued integration fur-
ther away from the camera (see Figs. 1 and 2 for an illustration
of the difference between the two strategies).

This method offers three additional advantages over the two
methods described above. Firstly, it allows simultaneous inte-
gration of the null geodesic and of the specific intensity, as
well as cutting off the null-geodesic integration when the opti-
cal depth of the material between the current location and the
camera becomes higher than a threshold value (any radiation
emitted beyond this point will be severely attenuated and thus be
negligible for the observer). Secondly, it relieves the need for a
data structure to store the geodesic in memory before performing

Fig. 2. Synchrotron emission map created using a GRMHD simula-
tion (see Sect. 4.2.2) made using the HARM code (Gammie et al. 2003).
Intensity is given in units of Jy pixel−2. The observer frequency is
100 GHz, the inclination angle is 30 degrees, and the disk-dominated
emission model discussed in Sect. 5 is used. Note the optically-thick
accretion disk and strong emission to the left of the black-hole shadow
(this region appears bright due to relativistic beaming). The ray inves-
tigated in Fig. 1 is marked by a white dot in this image. This particular
ray, travelling from the plasma to the observer, first passes through the
bright, relativistically-boosted region, and then through an optically-
thick, non-boosted region of the disk, suggesting that the specific
intensity along this ray will sharply increase, then decrease, before
reaching the observer. Figure 1 shows that this is indeed the case.

radiative-transfer calculations (since we simply integrate Iν,obs
along with the geodesic itself). Thirdly, with this method, it is
possible to compute appropriate integration step-sizes for both
the null geodesic and the radiative-transfer integration, and then
pick the minimum of the two. This avoids situations where
the null-geodesic integration, performed separately as if in a
vacuum, takes a large step through a plasma that is optically
thick at a range of frequencies of interest, yielding inaccurate
radiative-transfer calculations.

An expression for Iν,obs can be constructed by considering a
ray travelling backward from the camera into a radiating plasma.
At each point along the ray’s path, we computed the optical
depth of the material between the current location, λ, and the
observer’s location, λobs as

τν,obs (λ) =

∫ λ

λobs

αν(λ′) ν dλ′. (36)

We can then compute the local invariant emission coefficient,(
jν/ν2

)
, and scale it by exp (−τobs), resulting in the following

expression for the contribution of point λ on the geodesic to the
total observed intensity:

d
dλ̄


Iν,obs

ν3
obs

 =
jν
ν2 exp

(
−τν,obs

(
λ̄
))
. (37)

Integrating over the geodesic then yields the total invariant inten-
sity at the observer, Iν,obs/ν

3
obs, which is converted to Iν,obs using

Eq. (32) as before.
We have implemented all three integration strategies dis-

cussed in this section in RAPTOR and found that integration of
Eq. (37) produces the most accurate results in the least amount
of time.
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Fig. 3. Convergence plots for the L1-error norms of the conserved quantities E (dashed blue), L (solid black), and Q (dotted red) for the orbit with
parameters i = 90◦, α = −3.22, β = 1.12, a = 0.998 with different integrator settings. The errors are computed at a fixed coordinate time tfinal. Two
guide lines with slopes −2 (solid) and −4 (dashed) are drawn. The +, −, and ×-symbols represent respectively L, Q, and E, for the RK4 integrator.
The square, hexagon, and circle symbols represent the same quantities for the Verlet integrator.

Table 1. Parameters for the two “difficult” null geodesics under investi-
gation.

Parameter Orbit 1 Orbit 2

a 0.998 0.998
i 90◦ 60◦
α −2.1109 −0.001
β 0 4.752

4. Code verification

Since the program consists of two parts, namely the integra-
tion of the geodesics and the integration of the radiative-transfer
equation, correct results must be verified for both. In Sect. 4.1 we
verify the correct integration of null geodesics, while in Sect. 4.2
we focus on the radiative-transfer computations.

4.1. Verification of geodesic integration

In his seminal work, Carter (1968) presented three conserved
quantities associated with the orbits of photons (or particles) in
the Kerr spacetime:

E = −kt, (38)
L = kφ, (39)

Q = k2
θ + cos2 θ

[
a2

(
µ2 − k2

t

)
+ k2

φ/ sin2 θ
]
, (40)

where Q is the so-called Carter constant. Figure 3 shows, in
terms of the L1-error norms, that these quantities are conserved
as expected and that the errors converge respectively to second
and fourth order in step-size for the Verlet and RK4 algorithms,
for all coordinate systems.

Another interesting test for the geodesic integration comes
from considering those null geodesics in the Kerr spacetime
that have a complex morphology, looping around the horizon
many times before plunging in or escaping. Such pathological
geodesics are a good test for the code’s performance in a worst-
case scenario because even small errors lead to deviations (e.g.,
absorption into the event horizon). Table 1 shows the parameters
for two such geodesics.

Since geokerr is a semi-analytical code, it provides an
excellent reference for the accuracy of a numerical scheme. Plots
of the null geodesics described in Table 1, produced by both
geokerr and RAPTOR, are shown in Fig. 4.

4.2. Verification of radiative-transfer calculations

4.2.1. Emission line profiles and images of a thin accretion
disk

The first model we investigated revolves around line emission
profiles emitted from a thin accretion disk, which has been
studied by, among others, Luminet (1979) and Laor (1991),
and reproduced in Schnittman & Bertschinger (2004, see also
Schnittman & Rezzolla 2006, and Dexter & Agol 2009). The
model involves a steady state, optically thick, geometrically
thin accretion disk which is emitting monochromatic radiation
(Novikov & Thorne 1973). The disk extends from the black
hole’s innermost stable circular orbit (ISCO), which depends on
the black hole spin a (Bardeen et al. 1972), to an outer radius
of 15 M. The emission coefficient is proportional to 1/r2 and
there is no radiation absorption. An image of the disk is shown
in Fig. 5 (note the effects of relativistic beaming, which bright-
ens the parts of the disk that move toward the observer). Due to
relativistic beaming and the gravitational redshift, the line emis-
sion is broadened. We computed the spectrum a distant observer
would receive by recording the intensity carried by each ray as
well as its redshift (which is partly gravitational and partly due
to the disk’s velocity).

Figures 6a–d show the spectra recorded by a distant observer
for different black-hole spin values (positive/negative spin val-
ues refer to prograde/retrograde disk orbits, respectively). These
results show a very good agreement with Fig. 5 in Dexter & Agol
(2009).

4.2.2. Synchrotron images of accretion flow simulated with
BHAC

As a final test for our radiative-transfer integrator, we performed
a radiative-transfer simulation through GRMHD simulations of
hot accretion flow onto a SMBH with properties matching those
observed in Sagittarius A* (Sgr A*). The simulations are pro-
duced using the BHAC three-dimensional (3D) GRMHD code
(Porth et al. 2017). During these calculations, the performance
of RAPTOR is monitored.

The dominant emission mechanism of many low-frequency
(radio and millimeter wavelengths) models of Sgr A* is contin-
uum synchrotron emission from a relativistically hot magnetized
plasma, that is, with Θe := kBTe/mec2 & 1, with kB, Te, and
me being the Boltzmann constant, the electron temperature and
mass, respectively. The synchrotron emission and absorption
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Fig. 4. Comparison of null geodesics computed by the semi-analytical integrator geokerr to those computed by our fully numerical code. In each
case, the geodesic represented by the black dots was computed using geokerr while the geodesic represented by the white dotted line is the output
of RAPTOR (dots were chosen for the former geodesic because its variable step-size can otherwise create interpolation issues). The gray spheroid
represents the black hole’s outer event horizon. MKS coordinates were used with ε = 0.001. The parameters for these geodesics are listed in
Table 1.

Fig. 5. Intensity map of the thin disk model described in Sect. 3. Lensed
images of up to tenth order are taken into account, where the order of
an image is determined by the number of ray crossings of the equatorial
plane. Higher-order images are ignored in the computation of the thin
disk line spectra (Figs. 6a–d).

coefficients depend on the electron distribution function. Here,
and in the remaining part the paper, we assumed that the elec-
trons have a thermal, relativistic (Maxwell-Jüttner) distribution
function:

nTH
e (γ) =

nTH
e γ

√
γ2 − 1 exp (−γ/Θe)
ΘeK2 (1/Θe)

, (41)

where γ is an electron’s Lorentz factor and K2 is the modified
Bessel function of the second kind. The normalization constant
nTH

e is the total electron number density, given by integrating the
distribution function over all possible electron Lorentz factors:
nTH

e =
∫ ∞

1 nTH
e (γ) dγ.

The synchrotron emission coefficient jν of an ensemble
of electrons is obtained by integrating the synchrotron emis-
sion coefficient of a single electron over the electron energies
described by the above distribution function. Since the above
expression contains a Bessel function, direct integration is time-
consuming. In order to reduce the required computing time for
radiative-transfer calculations, we used an approximate formula
for the synchrotron emission coefficient provided by Leung et al.
(2011):

jTH
ν (ν, θ) =

√
2πe2nTH

e νs

3cK2(Θ−1
e )

(
X1/2 + 211/12X1/6

)2
exp

(
−X1/3

)
, (42)

where X is a dimensionless quantity given by

X :=
ν

νs
, (43)

and νs is the critical frequency for the synchrotron emission:

νs =
2
9

(
eB

2πmec

)
Θ2

e sin θ . (44)

Here, B is the magnetic field in the inertial frame, θ is the angle
between the photon wave vector kµ and the magnetic field four-
vector bµ in the fluid frame, and e is the unit electric charge. The
angle θ is calculated by using Eq. 73 in Dexter (2016). Here, we
used CGS units, so that the B field is given in (Gauss) and ne
is given in (cm−3). The synchrotron emission coefficient there-
fore has units of (ergs s−1 Hz−1 cm−3). In this test, we assumed
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(a) BL coordinates.
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(b) MBL coordinates.
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(c) KS coordinates.
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(d) MKS coordinates.

Fig. 6: Redshift spectra of the thin disk model described in Section 3 for four different coordinate systems. The five different spin
parameters examined in these plots are (in descending order for the peaked curves above Eobs/Eem = 1): −0.99,−0.5, 0, 0.5, 0.99.
The results may be compared with with Schnittman and Bertschinger (2004) and Dexter and Agol (2009).

5. Time-dependent radiative transfer in GRMHD
simulations

GRMHD simulations dump their data in so-called snapshots -
instantaneous states of the plasma captured at discrete moments
during the simulation. When creating images based on a series
of GRMHD snapshots using radiative-transfer calculations, it is
either possible to ignore a geodesic’s time coordinate, thereby
treating the GRMHD snapshot as static while the rays propagate
(this is normally referred to as the fast-light approximation), or
it is possible to keep track of the geodesic’s time coordinate, in-
terpolating between different GRMHD snapshots so as to obtain
the plasma conditions that are correct not only in space but also
in time (this is normally referred to as the slow-light approxima-
tion).

In order to generate the results of this section, we relaxed
the assumption of staticity of the GRMHD simulation during
radiative-transfer calculations and thus implement the slow-light
approximation with the goal of improving the accuracy of our
model in predicting the properties of the accretion flow onto a
SMBH. In such relativistic plasmas, the effects of selecting the
fast-/slow-light approximation can be arbitrarily great or small
based on the geometry and observer under consideration. For in-
stance, Dexter et al. (2010) considered the differences between
fast-light and slow-light in the context of a particular accreting
black-hole model and concluded that the differences were min-
imal. Here, we return to this problem as new models with more
complex electron thermodynamics have been developed. Over-
all, we are here interested in verifying the fast-light approxima-
tion in a broader context.

In GRMHD simulations such as those performed by HARM2D
or BHAC, only the heavy ions are simulated. In radiative pro-
cesses, however, ions are not the dominant source of emission,
and we therefore need a description to couple the electrons in the
plasma to their ionic counterparts. To do so, we implemented a
one-fluid model in which the coupling between the two species
changes throughout the simulation volume as a function of the
βp plasma parameter (Mościbrodzka et al. 2016)

Tp

Te
= Rlow

1
1 + β2

p
+ Rhigh

β2
p

1 + β2
p
, (47)

where βp := Pgas/Pmag is the ratio of gas pressure to magnetic-
field pressure Pmag = B2/2, and Rlow and Rhigh are two free pa-
rameters. In strongly magnetized plasmas, βp � 1 and Tp/Te →
Rlow. In weakly magnetized plasmas, on the other hand, βp � 1
and so Tp/Te → Rhigh.

The models used in this section are motivated by qual-
itatively reproducing the observed spectrum of Sgr A*
(Shcherbakov et al. 2012). Our primary focus, however, is on
investigating the difference (if any) between the fast-light and
slow-light paradigms, rather than on reproducing the source in
great detail. More precisely, the parameters assumed for our
modeling are that the SMBH has a mass of M = 4 × 106M�
and is at a distance of d = 7.88×103 pc (Boehle et al. 2016), that
the observer has an inclination of 60◦ and performs observations
at frequencies of 22, 43, 86, and 230 GHz.
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Fig. 6. Redshift spectra of the thin disk model described in Sect. 3 for four different coordinate systems. The five different spin parameters examined
in these plots are (in descending order for the peaked curves above Eobs/Eem = 1): −0.99,−0.5, 0, 0.5, 0.99. The results may be compared with with
Schnittman & Bertschinger (2004) and Dexter & Agol (2009).

that K2

(
Θ−1

e

)
= 2 Θ2

e , which is an approximation. However, eval-
uating properly the Bessel function can yield differences in the
integrated flux on the order of a few percent at most.

As shown in Leung et al. (2011), Eq. (42) is a good approx-
imation of the true synchrotron emission coefficient for a range
of electron temperatures Θe and frequencies ν. For θ = 30◦,
the relative error of the approximate emission coefficient for-
mula is less than 1% for Θe > 0.5, and ν/νc > 10 (where νc =
eB/2πmec = 2.8 × 106B Hz is the electron cyclotron frequency).
For θ = 80◦, the error is less than 1% when Θe > 0.5 and
ν/νc > 104. In our models, the typical magnetic field strength
is B ' 10 Gauss, so νc ' 107 Hz. Hence, when modeling the
emission at frequencies around ν = 1011 Hz, the approximate
synchrotron emission coefficient formula given by Eq. (42) is
very accurate.

The synchrotron self-absorption coefficient for a thermal dis-
tribution of electrons is derived from Kirchhoff’s law, αTH

ν =
jTH
ν /Bν, where αTH

ν is given in (cm−1) and Bν is the Planck
function:

Bν :=
2hν3

c2

1
exp

(
hν/(mec2Θe)

) − 1
. (45)

BHAC (and similar GRMHD codes such as HARM) employ
geometrized units, so that to carry out radiative-transfer calcula-
tions using the GRMHD simulation data for the plasma variables
we must scale the GRMHD variables using the rest-mass density
scaling factor ρ0 :=M/L3 and the magnetic field strength scal-
ing factor B0 := c

√
4πρ0. Here,L = GM/c2 and T = GM/c3 are

the simulation’s length and time scale factors, respectively; they

are functions of the black hole’s mass only. The mass unit, M, is
a free parameter of the model. The electron number density used
in the synchrotron emission/absorption coefficient formulae is
then calculated using

ne = ρ
ρ0

(me + mp)
cm−3 . (46)

In our GRMHD model, the temperature of protons Tp is pro-
portional to the ratio of the plasma’s pressure and density, so
that it is a scale-free quantity. The electron temperature Te,
which is essential to calculating the synchrotron emissivities, is
parametrized by the proton-to-electron temperature ratio, which
can be either constant or a function of GRMHD data variables.
The key parameters for the test simulation are listed in Table 2,
where τcutoff represents the optical depth at which integration is
terminated (radiation emitted past this optical depth will have a
negligible effect on the image).

It is found that, when using 10 CPU cores, RAPTOR integrates
10 707 geodesics per second, while with one GPU unit, RAPTOR
integrates 104 900 geodesics per second. The total run time for
an image of 2000 × 2000 pixels was less than one minute using
a GPU. A more detailed description of the code performance is
given in Appendix B.

Figure 7 (top left panel) presents an image computed by
RAPTOR of our GRMHD accretion flow simulation created in
BHAC. We compared our results to images produced by another
radiative transfer code, BHOSS (Younsi, in prep.; top right panel),
which uses a different set of algorithms to RAPTOR. The total
fluxes from both codes as a function of image resolution are
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Fig. 7: Intensity maps at 230 GHz for the comparison test, with a resolution of 4096 × 4096 pixels. The RAPTOR output (top left
panel) and BHOSS output (top right panel) show excellent agreement in total flux density. The relative difference between the output
of both codes is plotted in the bottom left panel. The deviations become quite large in the periphery of the image; since the intensity
in these regions is low, however, they do not contribute significantly to the integrated flux density, as can be seen in the absolute
difference between the two codes (bottom right panel).

5.1. Time calibration

When comparing slow and fast-light simulations it is important
to describe how the results align when comparing them. The rea-
son for this is that a single image from a slow-light calculation
uses data from many GRMHD slices, so that it is no longer pos-
sible to associate an image with a specific GRMHD slice, as is
possible in the case of a fast-light calculation. This also means
that a large number of GRMHD slices are needed for slow-light
calculations: the slices of GRMHD data should extend from the
moment in time when the first ray enters the simulation volume
until the moment when the last ray leaves it. When taking cur-
vature into account, these moments are difficult to compute and
depend on the initial conditions of the camera rays: some images

can contain rays that pass close to the event horizon, circling the
black hole many times before escaping (see Fig. 4), thus delay-
ing their exit time, potentially indefinitely for pathological rays.
We here neglected the contribution of these rays for two reasons;
first, the optical depth along such a ray would cause virtually all
emission beyond a certain value for the affine parameter to be
absorbed; second, rays that orbit the black hole for a an increas-
ing number of times are increasingly rare, thus contributing only
marginally to our images.

In practice, we established the alignment by introducing an
empirically determined time delay in our rays’ initial time co-
ordinate in such a way that light curves from the fast-light and
slow-light simulations at an inclination angle of 90◦ coincide;
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Fig. 7. Intensity maps at 230 GHz for the comparison test, with a resolution of 4096 × 4096 pixels. The RAPTOR output (top left panel) and BHOSS
output (top right panel) show excellent agreement in total flux density. The relative difference between the output of both codes is plotted in the
bottom left panel. The deviations become quite large in the periphery of the image; since the intensity in these regions is low, however, they do not
contribute significantly to the integrated flux density, as can be seen in the absolute difference between the two codes (bottom right panel).

given in Table 3. BHOSS and RAPTOR converge to almost iden-
tical total flux values, with a relative difference of 0.06% at a
resolution of 4096 × 4096 pixels. The percentage difference for
every pixel in both images is presented in the bottom left panel,
while the absolute difference between both images is shown in
the bottom right panel. The overall structure of the images is
consistent; the largest percentage differences are found in regions
of low specific intensity, whose contribution to the observed flux
density is negligible (see bottom right panel).

A possible source of the differences between BHOSS and
RAPTOR is the fact that the two codes employ different
approaches for computing step-sizes. BHOSS uses an algo-
rithm that depends on the optical depth of the plasma, while
RAPTOR bases its step-size purely on the geometry of spacetime.
This results in different sampling strategies which, although not
a dominant factor in the total flux, can nonetheless result in

large deviations in a plot of the relative difference between the
two images. Looking at the images and total fluxes, we con-
clude that the codes give consistent results while using different
methods to solve the radiative transport and geodesic equations.
The GRMHD file used in this comparison is included with the
RAPTOR code.

5. Time-dependent radiative transfer in GRMHD
simulations

GRMHD simulations dump their data in so-called snapshots –
instantaneous states of the plasma captured at discrete moments
during the simulation. When creating images based on a series
of GRMHD snapshots using radiative-transfer calculations, it is
either possible to ignore a geodesic’s time coordinate, thereby
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Fig. 8. Images of our slow-light-simulation of the disk emission dominated model at VLBI frequencies. The flux density is given in units of
Jy pixel−2.

Table 2. Setup for the comparison test between BHOSS and RAPTOR.

Variable Value

Mass 4.5 × 106 M�
Distance 8.5 kpc
rcamera 104 M
Range for α [−30, 30] M
Range for β [−30, 30] M
Resolution (x) 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 px
Resolution (y) 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 px
Frequency 230 GHz
Inclination 90◦
τcutoff ln(1000)
Tp/Te 3.0

Notes. The mass and distance estimates for Sgr A* used for our
convergence test were obtained from Ghez et al. (2008).

treating the GRMHD snapshot as static while the rays propa-
gate (this is normally referred to as the fast-light approximation),
or it is possible to keep track of the geodesic’s time coordi-
nate, interpolating between different GRMHD snapshots so as
to obtain the plasma conditions that are correct not only in space
but also in time (this is normally referred to as the slow-light
approximation).

In order to generate the results of this section, we relaxed
the assumption of staticity of the GRMHD simulation during
radiative-transfer calculations and thus implement the slow-light

Table 3. Integrated flux density computed by RAPTOR and BHOSS for
the model described in Sect. 4.2.2, as well as the relative error, showing
convergence of the output of the two codes.

Pixels I230 GHz,RAPTOR I230 GHz,BHOSS ∆I/I

128 × 128 2.39467 2.36903 1.07
256 × 256 2.39794 2.38237 0.65
512 × 512 2.39871 2.39133 0.31

1024 × 1024 2.39899 2.39553 0.14
2048 × 2048 2.39898 2.39777 0.050
4096 × 4096 2.39896 2.39881 0.0063

Notes. The last column reports the relative difference between
the two codes, which is, ∆I/I := (I230 GHz,RAPTOR − I230 GHz,BHOSS)/
I230 GHz,RAPTOR.

approximation with the goal of improving the accuracy of our
model in predicting the properties of the accretion flow onto
a SMBH. In such relativistic plasmas, the effects of select-
ing the fast-/slow-light approximation can be arbitrarily great
or small based on the geometry and observer under considera-
tion. For instance, Dexter et al. (2010) considered the differences
between fast-light and slow-light in the context of a particular
accreting black-hole model and concluded that the differences
were minimal. Here, we return to this problem as new models
with more complex electron thermodynamics have been devel-
oped. Overall, we are here interested in verifying the fast-light
approximation in a broader context.
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Fig. 9. Light curves for slow-light (solid) and fast-light (dashed) for the disk emission dominated model at VLBI frequencies. Residuals are
displayed below the light curves.
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Fig. 10: Normalized light curves of slow-light simulations at the VLBI frequencies (230 GHz (solid), 86 GHz (dashed), 43 GHz
(solid and dotted), 22 GHz (dotted)) for viewing angle of 60 degrees for our disk dominated model.
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Fig. 11: Images of our slow-light-simulation of the jet emission dominated model at VLBI frequencies. Flux density is given in
units of Jy pixel−2.
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Fig. 10. Normalized light curves of slow-
light simulations at the VLBI frequencies
(230 GHz (solid), 86 GHz (dashed), 43
GHz (solid and dotted), 22 GHz (dotted))
for viewing angle of 60 degrees for our
disk dominated model.

In GRMHD simulations such as those performed by HARM2D
or BHAC, only the heavy ions are simulated. In radiative pro-
cesses, however, ions are not the dominant source of emission,

and we therefore need a description to couple the electrons in the
plasma to their ionic counterparts. To do so, we implemented a
one-fluid model in which the coupling between the two species
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Fig. 11. Images of our slow-light-simulation of the jet emission dominated model at VLBI frequencies. Flux density is given in units of Jy pixel−2.

changes throughout the simulation volume as a function of the
βp plasma parameter (Mościbrodzka et al. 2016)

Tp

Te
= Rlow

1
1 + β2

p
+ Rhigh

β2
p

1 + β2
p
, (47)

where βp := Pgas/Pmag is the ratio of gas pressure to magnetic-
field pressure Pmag = B2/2, and Rlow and Rhigh are two free
parameters. In strongly magnetized plasmas, βp � 1 and
Tp/Te → Rlow. In weakly magnetized plasmas, on the other hand,
βp � 1 and so Tp/Te → Rhigh.

The models used in this section are motivated by qual-
itatively reproducing the observed spectrum of Sgr A*
(Shcherbakov et al. 2012). Our primary focus, however, is on
investigating the difference (if any) between the fast-light and
slow-light paradigms, rather than on reproducing the source in
great detail. More precisely, the parameters assumed for our
modeling are that the SMBH has a mass of M = 4 × 106 M�
and is at a distance of d = 7.88× 103 pc (Boehle et al. 2016), that
the observer has an inclination of 60◦ and performs observations
at frequencies of 22, 43, 86, and 230 GHz.

5.1. Time calibration

When comparing slow and fast-light simulations it is important
to describe how the results align when comparing them. The rea-
son for this is that a single image from a slow-light calculation
uses data from many GRMHD slices, so that it is no longer pos-
sible to associate an image with a specific GRMHD slice, as is
possible in the case of a fast-light calculation. This also means
that a large number of GRMHD slices are needed for slow-light

calculations: the slices of GRMHD data should extend from the
moment in time when the first ray enters the simulation volume
until the moment when the last ray leaves it. When taking cur-
vature into account, these moments are difficult to compute and
depend on the initial conditions of the camera rays: some images
can contain rays that pass close to the event horizon, circling the
black hole many times before escaping (see Fig. 4), thus delay-
ing their exit time, potentially indefinitely for pathological rays.
We here neglected the contribution of these rays for two reasons;
first, the optical depth along such a ray would cause virtually all
emission beyond a certain value for the affine parameter to be
absorbed; second, rays that orbit the black hole for a an increas-
ing number of times are increasingly rare, thus contributing only
marginally to our images.

In practice, we established the alignment by introducing
an empirically determined time delay in our rays’ initial time
coordinate in such a way that light curves from the fast-light
and slow-light simulations at an inclination angle of 90◦ coin-
cide; this is effectively equivalent to translating the slow-light
light curve with respect to the fast-light light curve on the time
axis.

5.2. Results

The model whose emission is dominated by the disk is
characterized by a mass scale factor, M = 5.03 × 10−15 M�
and the weak-magnetization electron-proton temperature ratio
Rhigh = Rlow = 1. Slow-light images of the accretion disk at
our 4 VLBI frequencies are presented in Fig. 8 (we do not
report the corresponding fast-light images as they are virtu-
ally indistinguishable). Light curves for both the slow-light and
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Fig. 12. Light curves for slow-light (solid) and fast-light (dashed) for the jet emission dominated model at VLBI frequencies. Residuals are displayed
below the light curves. A&A proofs: manuscript no. RAPTOR_I_AA
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Fig. 13: Normalized light curves of slow-light simulations at the VLBI frequencies (230 GHz (solid), 86 GHz (dashed), 43 GHz
(solid and dotted), 22 GHz (dotted)) for viewing angle of 60◦ for our jet dominated model.
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Fig. 13. Normalized light curves of
slow-light simulations at the VLBI
frequencies (230 GHz (solid), 86
GHz (dashed), 43 GHz (solid and
dotted), 22 GHz (dotted)) for view-
ing angle of 60◦ for our jet domi-
nated model.

fast-light simulations, along with residuals, are presented in
Fig. 9, while normalized light curves at all frequencies for the
slow-light simulation of the disk-emission model are shown in
Fig. 10.

Similarly, the model whose emission is dominated by the jet
is characterized by a mass scale factor M = 2.515 × 10−13M�

and the weak-magnetization electron-proton temperature ratio
Rhigh = 25 (while Rlow = 1). In this case, slow-light images of
the accretion flow at all VLBI frequencies are shown in Fig. 11,
while the light curves of fast- and slow-light simulations are
reported in Fig. 12; finally the normalized slow-light light curves
at all frequencies are shown in Fig. 13.
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We found that the difference between the fast-light and
slow-light approaches is systematically below 5% in all cases,
suggesting that the fast-light approximation is a good one for the
model presently under consideration, a result that is in line with
the findings of Dexter et al. (2010).

As a concluding remark, we note that we have considered
radiative-transfer calculations of the unpolarized component of
synchrotron radiation. This is motivated by the fact that obser-
vations show that linear and circular polarization of Sgr A*
are less than a few percent (Bower et al. 2003). Although
small, the polarization is nonzero and we here speculate that
the differences between the two approaches may become more
pronounced when considering the polarized components of the
radiation.

6. Summary

We have introduced RAPTOR, a new time-dependent radiative-
transfer code capable of producing physically accurate images of
black-hole accretion disks as calculated by GRMHD simulations
in particular, and of performing radiative-transfer calculations
in general astrophysical problems that involve radiative transfer
and strong gravity in general. The code achieves this result by
integrating null geodesics in arbitrary spacetimes and then per-
forming time-dependent radiative transport along the geodesics
to ultimately construct images, light curves, and spectra. Fur-
thermore, RAPTOR is capable of time-dependent computations,
in which the characteristics of a single image may depend on a
range of input data in the time domain and it can be run on both
CPUs and GPUs.

We have verified correctness of our geodesic calculations
by investigating the conservation of constants of motion and
comparing our results to the semi-analytical code geokerr,
our results being in good agreement. The same procedure was
applied to our radiative-transfer computations: we performed a
number of tests of our various integration schemes and repro-
duced results from the literature.

As an additional verification step, we compared our code
directly to the another recently developed radiative-transfer code:
BHOSS (Younsi, in prep.). We considered a complex scenario
that involves a particular set of GRMHD data along with a
physical radiative model and produced images of the accre-
tion flows using both codes. The result was a convergence of
the total flux density as computed by the two codes, which
rely on different integration algorithms for both null geodesics
and radiative transfer, to a relative error of less than 0.01%
(see Fig. 7), demonstrating that our implementations are highly
consistent.

An important validation of our code has come from neglect-
ing a commonly made assumption that the physical properties of
the underlying plasma do not vary during the propagation of the
radiation (fast-light approximation). We have therefore studied
the difference between the slow-light and fast-light paradigms
in radiative models of accretion flows onto SMBHs. The differ-
ences between slow-light and fast-light can be arbitrarily large
or utterly negligible, depending on the physical conditions. In
context we have considered, where we have investigated radia-
tive models based on 2D GRMHD data, we conclude that
the effects of switching between the fast-light and slow-light
paradigms on the appearance of this particular model’s accre-
tion flow are smaller than 5% across the VLBI frequencies we
examined.

While these results are in agreement with the findings
of Dexter et al. (2010) we note that this conclusion may be

influenced by the fact that we have investigated unpolarized
radiative transfer only. In conclusion, the RAPTOR code – and
its further developments in terms of the possibility of treat-
ing polarized radiative transfer – may be used to compare
synthetic images of SMBH accretion flows to mm-VLBI data
from the Event Horizon Telescope Collaboration1 and to extract
physical properties of the black-hole system (e.g., spin, incli-
nation) or to test the predictions of GR about the size and
shape of the black-hole shadow. The code has many potential
applications in other astrophysical problems, such as radia-
tive transfer near a neutron star or a binary black-hole system.
It is also well-suited to creating material for outreach pur-
poses, such as virtual-reality movies of black hole environments
(Davelaar et al., in prep.).

Finally, we note that because the electron distribution func-
tion of the plasma is an important factor in determining radiative
properties, reducing the number of assumptions made about this
function may have an appreciable effect on the synthetic obser-
vational data one may generate using our models. In view of this,
we have recently added a more general particle distribution func-
tion than the one presented here, relaxing the assumption that the
electrons are in a thermal distribution by adding accelerated par-
ticles and thereby improving the accuracy of radiative models.
The results of this analysis will be presented in a distinct and
forthcoming paper (Davelaar et al. 2018).
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Appendix A: Coordinate Transformations

Here, we list certain non-trivial coordinate transformations that
are used in RAPTOR. In what follows, the BL coordinates are
denoted by (t, r, θ, φ), and the KS coordinates by (t̃, r, θ, φ̃).

A.1. BL-KS

The transformations of the coordinate vector between BL and
KS coordinates is given by (see e.g., Font et al. 1999):

t̃ = t + M ln ∆ +
2M2

r+ − r−
ln

(
r − r+

r − r−

)
, (A.1)

φ̃ = φ +
a

r+ − r−
ln

(
r − r+

r − r−

)
, (A.2)

˙̃t = ṫ +
2Mr

∆
ṙ , (A.3)

˙̃φ = φ̇ +
a
∆

ṙ , (A.4)

where an overdot denotes differentiation with respect to
the affine parameter, λ, r± := M ±

√
M2 − a2 denotes the

outer(inner) event horizon radius, ∆ = r2 − 2Mr + a2 := (r −
r+)(r − r−) and M is the black-hole mass. It is important to
note that these transformations are valid only in the region of
spacetime exterior to the black-hole horizon.

Four-vectors transform differently. In RAPTOR, the initial
contravariant wave vector kµ0 is always constructed using BL
coordinates, and must be transformed to KS coordinates. This is
accompanied by the following transformation matrix (McKinney
& Gammie 2004):

kᾱ =



1 2r/∆ 0 0
0 1 0 0
0 0 1 0
0 a/∆ 0 1


kα , (A.5)

where kα denotes the wave vector in BL coordinates, kᾱ is
the wave vector in KS coordinates. The reverse transformation is
given by

kα =



1 −2r/∆ 0 0
0 1 0 0
0 0 1 0
0 −a/∆ 0 1


kᾱ . (A.6)

A.2. KS-MKS

The modified Kerr-Schild coordinates (MKS), as used by, for
example, Gammie et al. (2003), are denoted by (t̃, x1, x2, φ̃).
Some of these quantities may be expressed in terms of conven-
tional KS coordinates as:

x1 = ln (r − r0) , (A.7)

ẋ1 =
ṙ

r − r0
, (A.8)

ẋ2 =
θ̇

π
[
1 + (1 − h) cos

(
2πx2)] , (A.9)

where 0 ≤ h ≤ 1 is obtained from the GRMHD data and
stretches the zenith coordinate near the poles and the equato-
rial plane. Notice that we cannot obtain x2(θ) algebraically as

this requires solving a transcendental equation; we must find it
numerically, via the inverse transformation x2 → θ, which can
be written in closed form. This transformation, along with the
corresponding inverse transformations for Eqs. (A.7), (A.8), and
(A.9), may be written as:

r = r0 + exp x1, (A.10)

θ = πx2 +
1
2

(1 − h) sin
(
2πx2

)
, (A.11)

ṙ = ẋ1 (r − r0), (A.12)

θ̇ = πẋ2
[
1 + (1 − h) cos

(
2πx2

)]
. (A.13)

To perform the transformation θ → x2, we must resort to
numerically (indeed iteratively) seeking a value x2 that satisfies
Eq. (A.11), and this is readily performed using the Newton-
Raphson method. For a function f (x) the solution to f (x) = 0
may be found iteratively as:

xn+1 = xn − f (xn)
f ′(xn)

, (A.14)

where f ′(xn) := d f (xn)/dxn and the index n denotes the iterative
step. For MKS coordinates we have:

f (x2
n) =

[
πx2

n +
1
2

(1 − h) sin
(
2πx2

n

)
− θ

]
, (A.15)

f ′(x2
n) = π

[
1 + (1 − h) cos

(
2πx2

n

)]
, (A.16)

since ∂θ/∂x2
n = 0 and θ is constant in the above iterative scheme.

One must start with a trial value for x2
0 � 1 and then iterate from

there. Since x2 ∈ [0, 1], if x2
n+1 < 0 or x2

n+1 > 1 then reset x2
n+1 to a

small value (e.g., 0.05). We also apply the above reset if f ′(x2
n)→

0. Finally, we define a appropriate convergence criterion, namely
|x2

n+1 − x2
n| < ε, where ε is the error tolerance we find acceptable.

Appendix B: Code performance

As mentioned in the Introduction, an important added value
of RAPTOR is that it is a hybrid code that can be compiled
for both CPUs and GPUs. Two distinct parallelization meth-
ods are implemented in the code; one is OpenMP2, with which
it is possible to run the code on multiple CPU cores; the other
is OpenACC, with which it is possible to run the code on both
the CPU and GPU. We have verified and tested the performance
of the code in these environments by considering a radiative-
transfer calculation through our BHAC GRMHD simulation. The
model parameters are listed in Table B.1. More specifically, we
investigate how the performance of RAPTOR scales with the
number of threads that are employed. This is done by running
the same setup (Table B.1) on the same hardware (Table B.2)
multiple times, using a different number of cores each
time.

The scalability is measured by calculating the speed-up
factor, which is defined as

S = T#threads/Tsingle thread , (B.1)

where T is the run time of the code for a given amount of threads.
The results of our runs can be found in Fig. B.1 and they

show that the code scales sub-linearly with the number of cores,

2 http://www.openmp.org
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Table B.1. Numerical parameters for the code performance tests.

cores OpenMP (speed up)

Single precision Yes
Amount of pixels 512 × 512
Image size 40 M
step-size ε (Eq. (21)) 0.03
Integration scheme RK2
Radiative transport Yes

as is expected, since communication overhead increases with an
increasing number of threads; again, as expected, the GPU runs
outperform the CPU ones. Interestingly, the OpenMP implemen-
tation slightly outperforms OpenACC, but this is not surprising,
since OpenACC lacks hyper-threading support for CPUs, which is
instead provided with OpenMP. When using 10 CPU-cores, RAP-
TOR can integrate 10 707 geodesics per second, while with one
GPU unit, RAPTOR integrates 104 900 geodesics per second.

One reason why the difference between GPU and CPU
performance is relatively small is the additional time required
for data transfer and kernel booting operations in the GPU
based implementation. We therefore also rendered a large image
(2000 × 2000 pixels) on both the CPU and GPU, to check
whether the difference between CPU and GPU performance
increases. The average run times are 3 minutes and 58 seconds on
one CPU, and 39 seconds on one GPU, respectively. As expected,
the difference in performance is substantially increased under
these conditions.

These total run times also include data read (∼1 s) and output
generation (∼0.2 s) operations. Overall, the calculation of the
image on the GPU took 2.5 s.
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to run the code on multiple CPU cores; the other is OpenACC,
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these environments by considering a radiative-transfer calcula-
tion through our BHAC GRMHD simulation. The model parame-
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that are employed. This is done by running the same setup (Ta-
ble B.1) on the same hardware (Table B.2) multiple times, using
a different number of cores each time.

The scalability is measured by calculating the speed-up fac-
tor, which is defined as

S = T#threads/Tsingle thread , (B.1)

where T is the run time of the code for a given amount of threads.
The results of our runs can be found in Fig. B.1 and they

show that the code scales sub-linearly with the number of cores,
as is expected, since communication overhead increases with an
increasing number of threads; again, as expected, the GPU runs
outperform the CPU ones. Interestingly, the OpenMP implemen-
tation slightly outperforms OpenACC, but this is not surprising,
since OpenACC lacks hyper-threading support for CPUs, which
is instead provided with OpenMP. When using 10 CPU-cores,
RAPTOR can integrate 10,707 geodesics per second, while with
one GPU unit, RAPTOR integrates 104,900 geodesics per second.

One reason why the difference between GPU and CPU per-
formance is relatively small is the additional time required for
data transfer and kernel booting operations in the GPU based im-
plementation. We therefore also rendered a large image (2000 ×
2000 pixels) on both the CPU and GPU, to check whether the
difference between CPU and GPU performance increases. The
average run times are of 3 min, 58 sec on one CPU and of and
39 sec one GPU, respectively. As expected, the performance dif-
ference is substantially increased under these conditions. These
total run times also include data read (∼ 1 second) and output
generation (∼ 0.2 seconds) operations. Overall, the calculation
of the image on the GPU took 2.5 seconds.

1 http://www.openmp.org
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Fig. B.1: Run time (left) and speed-up factor (right) for RAPTOR
using OpenMP and OpenACC.

OpenMP OpenACC
CPU Intel i7-6950X Intel i7-6950X CPU
No. cores 10 10
Multi-threading yes no
Clock speed 3.0 GHz 3.0 GHz
GPU - GeForce GTX 1080
No. CUDA cores - 2560
Compiler gcc pgcc
Optimization flags -O3 fastmath

Table B.2: Description of the hardware on which our perfor-
mance tests were executed.
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Table B.2. Description of the hardware on which our performance tests
were executed.

OpenMP OpenACC

CPU Intel i7-6950X Intel i7-6950X CPU
No. cores 10 10
Multi-threading yes no
Clock speed 3.0 GHz 3.0 GHz
GPU - GeForce GTX 1080
No. CUDA cores - 2560
Compiler gcc pgcc
Optimization flags -O3 fastmath
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