23 research outputs found

    Nuclear-lipid-droplet proteome: carboxylesterase as a nuclear lipase involved in lipid-droplet homeostasis

    Get PDF
    Nuclear-lipid droplets (nLD)—a dynamic cellular organelle that stores neutral lipids, within the nucleus of eukaryotic cells—consists of a hydrophobic triacylglycerol –cholesterol-ester core enriched in oleic acid (OA) surrounded by a monolayer of polar lipids, cholesterol, and proteins. nLD are probably involved in nuclear-lipid homeostasis serving as an endonuclear buffer that provides or incorporates lipids and proteins participating in signaling pathways, as transcription factors and enzymes of lipid metabolism and nuclear processes. In the present work, we analyzed the nLD proteome and hypothesized that nLD-monolayer proteins could be involved in processes similar as the ones occurring in the cLD including lipid metabolism and other cellular functions. We evaluated the rat-liver–nLD proteome under physiological and nonpathological conditions by GeLC-MS2. Since isolated nLD are highly diluted, a protein-concentrating isolation protocol was designed. Thirty-five proteins were identified within the functional categories: cytoskeleton and structural, transcription and translation, histones, protein-folding and posttranslational modification, cellular proliferation and/or cancer, lipid metabolism, and transport. Purified nLD contained an enzyme from the lipid-metabolism pathway, carboxylesterase 1d (Ces1d/ Ces3). Nuclear Carboxylesterase localization was confirmed by Western blotting. By in-silico analyses rat Ces1d/ Ces3 secondary and tertiary structure predicted would be equivalent to human CES1. These results—the first nLD proteome—demonstrate that a tandem-GeLC-MS2-analysis protocol facilitates studies like these on rat-liver nuclei. A diversity of cellular-protein function was identified indicating the direct or indirect nLD participation and involving Ces1d/Ces3 in the LD-population homeostasis.Instituto de Investigaciones Bioquímicas de La PlataFacultad de Ciencias Exacta

    Plasticity in the Oxidative Folding Pathway of the High Affinity Nerita Versicolor Carboxypeptidase Inhibitor (NvCI)

    Get PDF
    Nerita Versicolor carboxypeptidase inhibitor (NvCI) is the strongest inhibitor reported so far for the M14A subfamily of carboxypeptidases. It comprises 53 residues and a protein fold composed of a two-stranded antiparallel β sheet connected by three loops and stabilized by three disulfide bridges. Here we report the oxidative folding and reductive unfolding pathways of NvCI. Much debate has gone on whether protein conformational folding guides disulfide bond formation or instead they are disulfide bonds that favour the arrangement of local or global structural elements. We show here that for NvCI both possibilities apply. Under physiological conditions, this protein folds trough a funnelled pathway involving a network of kinetically connected native-like intermediates, all sharing the disulfide bond connecting the two β-strands. In contrast, under denaturing conditions, the folding of NvCI is under thermodynamic control and follows a "trial and error" mechanism, in which an initial quasi-stochastic population of intermediates rearrange their disulfide bonds to attain the stable native topology. Despite their striking mechanistic differences, the efficiency of both folding routes is similar. The present study illustrates thus a surprising plasticity in the folding of this extremely stable small disulfide-rich inhibitor and provides the basis for its redesign for biomedical applications.Instituto Multidisciplinario de Biología Celula

    Identification of cross-reactive B-cell epitopes between Bos d 9.0101(<i>Bos Taurus</i>) and Gly m 5.0101 (<i>Glycine max</i>) by epitope mapping MALDI-TOF MS

    Get PDF
    Exposure to cow’smilk constitutes one of the most common causes of food allergy. In addition, exposure to soy proteins has become relevant in a restricted proportion ofmilk allergic pediatric patients treated with soy formulae as a dairy substitute, because of the cross-allergenicity described between soy and milk proteins. We have previously identified several cross-reactive allergens between milk and soy that may explain this intolerance. The purpose of the present work was to identify epitopes in the purified αS1-casein and the recombinant soy allergen Gly m 5.0101 (Gly m 5) using an α-casein-specific monoclonal antibody (1D5 mAb) through two different approaches for epitope mapping, to understand cross-reactivity between milk and soy. The 1D5 mAb was immobilized onto magnetic beads, incubated with the peptide mixture previously obtained by enzymatic digestion of the allergens, and the captured peptides were identified by MALDI-TOFMS analysis. On a second approach, the peptidemixture was resolved by RP-HPLC and immunodominant peptides were identified by dot blot with the mAb. Finally, recognized peptides were sequenced by MALDI-TOF MS. This novel MS based approach led us to identify and characterize four peptides on α-casein and three peptides on Gly m 5 with a common core motif. Information obtained from these cross-reactive epitopes allows us to gain valuable insight into the molecular mechanisms of cross-reactivity, to further develop new and more effective vaccines for food allergy.Facultad de Ciencias ExactasInstituto de Estudios Inmunológicos y FisiopatológicosInstituto Multidisciplinario de Biología Celula

    Association of Candidate Gene Polymorphisms With Chronic Kidney Disease: Results of a Case-Control Analysis in the Nefrona Cohort

    Get PDF
    Chronic kidney disease (CKD) is a major risk factor for end-stage renal disease, cardiovascular disease and premature death. Despite classical clinical risk factors for CKD and some genetic risk factors have been identified, the residual risk observed in prediction models is still high. Therefore, new risk factors need to be identified in order to better predict the risk of CKD in the population. Here, we analyzed the genetic association of 79 SNPs of proteins associated with mineral metabolism disturbances with CKD in a cohort that includes 2, 445 CKD cases and 559 controls. Genotyping was performed with matrix assisted laser desorption ionizationtime of flight mass spectrometry. We used logistic regression models considering different genetic inheritance models to assess the association of the SNPs with the prevalence of CKD, adjusting for known risk factors. Eight SNPs (rs1126616, rs35068180, rs2238135, rs1800247, rs385564, rs4236, rs2248359, and rs1564858) were associated with CKD even after adjusting by sex, age and race. A model containing five of these SNPs (rs1126616, rs35068180, rs1800247, rs4236, and rs2248359), diabetes and hypertension showed better performance than models considering only clinical risk factors, significantly increasing the area under the curve of the model without polymorphisms. Furthermore, one of the SNPs (the rs2248359) showed an interaction with hypertension, being the risk genotype affecting only hypertensive patients. We conclude that 5 SNPs related to proteins implicated in mineral metabolism disturbances (Osteopontin, osteocalcin, matrix gla protein, matrix metalloprotease 3 and 24 hydroxylase) are associated to an increased risk of suffering CKD

    Nuclear-lipid-droplet proteome: carboxylesterase as a nuclear lipase involved in lipid-droplet homeostasis

    Get PDF
    Nuclear-lipid droplets (nLD)—a dynamic cellular organelle that stores neutral lipids, within the nucleus of eukaryotic cells—consists of a hydrophobic triacylglycerol –cholesterol-ester core enriched in oleic acid (OA) surrounded by a monolayer of polar lipids, cholesterol, and proteins. nLD are probably involved in nuclear-lipid homeostasis serving as an endonuclear buffer that provides or incorporates lipids and proteins participating in signaling pathways, as transcription factors and enzymes of lipid metabolism and nuclear processes. In the present work, we analyzed the nLD proteome and hypothesized that nLD-monolayer proteins could be involved in processes similar as the ones occurring in the cLD including lipid metabolism and other cellular functions. We evaluated the rat-liver–nLD proteome under physiological and nonpathological conditions by GeLC-MS2. Since isolated nLD are highly diluted, a protein-concentrating isolation protocol was designed. Thirty-five proteins were identified within the functional categories: cytoskeleton and structural, transcription and translation, histones, protein-folding and posttranslational modification, cellular proliferation and/or cancer, lipid metabolism, and transport. Purified nLD contained an enzyme from the lipid-metabolism pathway, carboxylesterase 1d (Ces1d/Ces3). Nuclear Carboxylesterase localization was confirmed by Western blotting. By in-silico analyses rat Ces1d/Ces3 secondary and tertiary structure predicted would be equivalent to human CES1. These results—the first nLD proteome—demonstrate that a tandem-GeLC-MS2-analysis protocol facilitates studies like these on rat-liver nuclei. A diversity of cellular-protein function was identified indicating the direct or indirect nLD participation and involving Ces1d/Ces3 in the LD-population homeostasis.Fil: Lagrutta, Lucía Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Layerenza, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Bronsoms, Silvia. Universitat Autònoma de Barcelona; EspañaFil: Trejo, Sebastian Alejandro. Universitat Autònoma de Barcelona; EspañaFil: Ves Losada, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentin
    corecore