17 research outputs found
Optical control of 4f orbital state in rare-earth metals
Information technology demands continuous increase of data-storage density.
In high-density magnetic recording media, the large magneto-crystalline
anisotropy (MCA) stabilizes the stored information against decay through
thermal fluctuations. In the latest generation storage media, MCA is so large
that magnetic order needs to be transiently destroyed by heat to enable bit
writing. Here we show an alternative approach to control high-anisotropy
magnets: With ultrashort laser pulses the anisotropy itself can be manipulated
via electronic state excitations. In rare-earth materials like terbium metal,
magnetic moment and high MCA both originate from the 4f electronic state.
Following infrared laser excitation 5d-4f electron-electron scattering
processes lead to selective orbital excitations that change the 4f orbital
occupation and significantly alter the MCA. Besides these excitations within
the 4f multiplet, 5d-4f electron transfer causes a transient change of the 4f
occupation number, which, too, strongly alters the MCA. Such MCA change cannot
be achieved by heating: The material would rather be damaged than the 4f
configuration modified. Our results show a way to overcome this limitation for
a new type of efficient magnetic storage medium. Besides potential
technological relevance, the observation of MCA-changing excitations also has
implications for a general understanding of magnetic dynamics processes on
ultrashort time scales, where the 4f electronic state affects the angular
momentum transfer between spin system and lattice.Comment: Manuscript (14 pages, 3 figures) and Supplementary Information (22
pages, 9 figures
Ultrafast manipulation of the NiO antiferromagnetic order via sub gap optical excitation
Wide band gap insulators such as NiO offer the exciting prospect of coherently manipulating electronic correlations with strong optical fields. Contrary to metals where rapid dephasing of optical excitation via electronic processes occurs, the sub gap excitation in charge transfer insulators has been shown to couple to low energy bosonic excitations. However, it is currently unknown if the bosonic dressing field is composed of phonons or magnons. Here we use the prototypical charge transfer insulator NiO to demonstrate that 1.5 eV sub gap optical excitation leads to a renormalised NiO band gap in combination with a significant reduction of the antiferromagnetic order. We employ element specific X ray reflectivity at the FLASH free electron laser to demonstrate the reduction of the upper band edge at the O 1s 2p core valence resonance K edge whereas the antiferromagnetic order is probed via X ray magnetic linear dichroism XMLD at the Ni 2p 3d resonance L2 edge . Comparing the transient XMLD spectral line shape to ground state measurements allows us to extract a spin temperature rise of 65 5 K for time delays longer than 400 fs while at earlier times a non equilibrium spin state is formed. We identify transient mid gap states being formed during the first 200 fs accompanied by a band gap reduction lasting at least up to the maximum measured time delay of 2.4 ps. Electronic structure calculations indicate that magnon excitations significantly contribute to the reduction of the NiO band ga
Photoinduced long-lived state in FeSe0.4Te0.6
FeSexTe1 12x compounds display a rich phase diagram, ranging from the nematicity of FeSe to the (\u3c0,\u3c0) magnetism of FeTe. We focus on FeSe0.4Te0.6, and exploit tr-ARPES to study its ultrafast electron dynamics following photoexcitation by near-infrared pump pulses. By exploiting probe-polarization-dependent matrix element effects, we reveal a photoinduced long-lived state, lasting for a few tens of picoseconds, showing features compatible with a nematic state. The possibility to induce a long-lived state in this compound by using ultra-short pulses might shed a new light on the driving force behind the nematic symmetry breaking in iron-based superconductors. With the aid of a phenomenological model, we illustrate how our results possibly question the common belief that a low-energy coupling with fluctuations is a necessary condition to stabilize the nematic order. On the contrary, the tendency towards orbital differentiation due to strong electronic correlations induced by the Hund's coupling could be at the origin of the nematic order in iron-based superconductors