47 research outputs found

    Comprehensive mRNA Expression Profiling Distinguishes Tauopathies and Identifies Shared Molecular Pathways

    Get PDF
    Background: Understanding the aetiologies of neurodegenerative diseases such as Alzheimer's disease (AD), Pick's disease (PiD), Progressive Supranuclear Palsy (PSP) and Frontotemporal dementia (FTD) is often hampered by the considerable clinical and molecular overlap between these diseases and normal ageing. The development of high throughput genomic technologies such as microarrays provide a new molecular tool to gain insight in the complexity and relationships between diseases, as they provide data on the simultaneous activity of multiple genes, gene networks and cellular pathways. Methodology/Principal Findings: We have constructed genome wide expression profiles from snap frozen post-mortem tissue from the medial temporal lobe of patients with four neurodegenerative disorders (5 AD, 5 PSP, 5 PiD and 5 FTD patients) and 5 control subjects. All patients were matched for age, gender, ApoE-e and MAPT (tau) haplotype. From all groups a total of 790 probes were shown to be differently expressed when compared to control individuals. The results from these experiments were then used to investigate the correlations between clinical, pathological and molecular findings. From the 790 identified probes we extracted a gene set of 166 probes whose expression could discriminate between these disorders and normal ageing. Conclusions/Significance: From genome wide expression profiles we extracted a gene set of 166 probes whose expression could discriminate between neurological disorders and normal ageing. This gene set can be further developed into an accurate microarray-based classification test. Furthermore, from this dataset we extracted a disease specific set of genes and identified two aging related transcription factors (FOXO1A and FOXO3A) as possible drug targets related to neurodegenerative disease

    Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration

    Get PDF
    Frontotemporal lobar degeneration (FTLD) is a clinically, genetically and pathologically heterogeneous disorder. Within FTLD with ubiquitin-positive inclusions (FTLD-U), a new pathological subtype named FTLD-FUS was recently found with fused in sarcoma (FUS) positive, TDP-43-negative inclusions, and striking atrophy of the caudate nucleus. The aim of this study was to determine the frequency of FTLD-FUS in our pathological FTLD series, and to describe the clinical, neuroimaging and neuropathological features of FTLD-FUS, especially caudate atrophy. Demographic and clinical data collected prospectively from 387 patients with frontotemporal dementia (FTD) yielded 74 brain specimens. Immunostaining was carried out using a panel of antibodies, including AT-8, ubiquitin, p62, FUS, and TDP-43. Cortical and caudate atrophy on MRI (n = 136) was rated as normal, mild-moderate or severe. Of the 37 FTLD-U cases, 33 were reclassified as FTLD-TDP and four (0.11, 95%: 0.00–0.21) as FTLD-FUS, with ubiquitin and FUS-positive, p62 and TDP-43-negative neuronal intranuclear inclusions (NII). All four FTLD-FUS cases had a negative family history, behavioural variant FTD (bvFTD), and three had an age at onset ≤40 years. MRI revealed mild-moderate or severe caudate atrophy in all, with a mean duration from onset till MRI of 63 months (range 16–119 months). In our total clinical FTD cohort, we found 11 patients (0.03; 95% CI: 0.01–0.05) with bvFTD, negative family history, and age at onset ≤40 years. Caudate atrophy was present in 10 out of 136 MRIs, and included all four FUS-cases. The newly identified FTLD-FUS has a frequency of 11% in FTLD-U, and an estimated frequency of three percent in our clinical FTD cohort. The existence of this pathological subtype can be predicted with reasonable certainty by age at onset ≤40 years, negative family history, bvFTD and caudate atrophy on MRI

    An increase of cereal intake as an approach to weight reduction in children is effective only when accompanied by nutrition education: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main emphasis of dietary advice for control of obesity has been on reducing dietary fat. Increasing ready to eat cereal (RTEC) consumption could be a strategy to reduce fat intake and increase carbohydrate intake resulting in a diet with lower energy density.</p> <p>Objectives</p> <p>1. To determine if an increase in RTEC intake is an effective strategy to reduce excess body weight and blood lipids in overweight or at risk of overweight children. 2. To determine if a nutrition education program would make a difference on the response to an increase in cereal intake. 3) To determine if increase in RTEC intake alone or with a nutrition education program has an effect on plasma lipid profile.</p> <p>Experimental design</p> <p>One hundred and forty seven overweight or at risk of overweight children (6–12 y of age) were assigned to one of four different treatments: a. One serving of 33 ± 7 g of RTEC for breakfast; b. one serving of 33 ± 7 g of RTEC for breakfast and another one for dinner; c. one serving of 33 ± 7 g of RTEC for breakfast and a nutrition education program. d. Non intervention, control group. Anthropometry, body composition, physical activity and blood lipids were measured at baseline, before treatments, and 12 weeks after treatments.</p> <p>Results</p> <p>After 12 weeks of intervention only the children that received 33 ± 7 g of RTEC and nutrition education had significantly lower body weight [-1.01 (-1.69, -0.34) ], p < 0.01], lower BMI [-0.95 (-1.71, -0.20), p < 0.01] and lower total body fat [-0.71 (-1.71, 0.28), p < 0.05] compared with the control group [1.19 (0.39, 1.98), 0.01 (-0.38, 0.41), 0.44 (-0.46, 1.35) respectively]. Plasma triglycerides and VLDL were significantly reduced [-20.74 (-36.44, -5.05), -3.78 (-6.91, -0.64) respectively, p < 0.05] and HDL increased significantly [6.61 (2.15, 11.08), p < 0.01] only in this treatment group. The groups that received 1 or 2 doses of RTEC alone were not significantly different to the control group.</p> <p>Conclusion</p> <p>A strategy to increase RTEC consumption, as a source of carbohydrate, to reduce obesity is effective only when accompanied by nutrition education. The need for education could be extrapolated to other strategies intended for treatment of obesity.</p> <p>Trial Registration</p> <p>Australian New Zealand Clincial Trial Registry. Request no: ACTRN12608000025336</p

    A computational method for estimating the PCR duplication rate in DNA and RNA-seq experiments

    Get PDF
    BACKGROUND: PCR amplification is an important step in the preparation of DNA sequencing libraries prior to high-throughput sequencing. PCR amplification introduces redundant reads in the sequence data and estimating the PCR duplication rate is important to assess the frequency of such reads. Existing computational methods do not distinguish PCR duplicates from “natural” read duplicates that represent independent DNA fragments and therefore, over-estimate the PCR duplication rate for DNA-seq and RNA-seq experiments. RESULTS: In this paper, we present a computational method to estimate the average PCR duplication rate of high-throughput sequence datasets that accounts for natural read duplicates by leveraging heterozygous variants in an individual genome. Analysis of simulated data and exome sequence data from the 1000 Genomes project demonstrated that our method can accurately estimate the PCR duplication rate on paired-end as well as single-end read datasets which contain a high proportion of natural read duplicates. Further, analysis of exome datasets prepared using the Nextera library preparation method indicated that 45–50% of read duplicates correspond to natural read duplicates likely due to fragmentation bias. Finally, analysis of RNA-seq datasets from individuals in the 1000 Genomes project demonstrated that 70–95% of read duplicates observed in such datasets correspond to natural duplicates sampled from genes with high expression and identified outlier samples with a 2-fold greater PCR duplication rate than other samples. CONCLUSIONS: The method described here is a useful tool for estimating the PCR duplication rate of high-throughput sequence datasets and for assessing the fraction of read duplicates that correspond to natural read duplicates. An implementation of the method is available at https://github.com/vibansal/PCRduplicates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-017-1471-9) contains supplementary material, which is available to authorized users

    Granulovacuolar Degenerations Appear in Relation to Hippocampal Phosphorylated Tau Accumulation in Various Neurodegenerative Disorders

    Get PDF
    BACKGROUND: Granulovacuolar degeneration (GVD) is one of the pathological hallmarks of Alzheimer's disease (AD), and it is defined as electron-dense granules within double membrane-bound cytoplasmic vacuoles. Several lines of evidence have suggested that GVDs appear within hippocampal pyramidal neurons in AD when phosphorylated tau begins to aggregate into early-stage neurofibrillary tangles. The aim of this study is to investigate the association of GVDs with phosphorylated tau pathology to determine whether GVDs and phosphorylated tau coexist among different non-AD neurodegenerative disorders. METHODS: An autopsied series of 28 patients with a variety of neurodegenerative disorders and 9 control patients were evaluated. Standard histological stains along with immunohistochemistry using protein markers for GVD and confocal microscopy were utilized. RESULTS: The number of neurons with GVDs significantly increased with the level of phosphorylated tau accumulation in the hippocampal regions in non-AD neurodegenerative disorders. At the cellular level, diffuse staining for phosphorylated tau was detected in neurons with GVDs. CONCLUSIONS: Our data suggest that GVDs appear in relation to hippocampal phosphorylated tau accumulation in various neurodegenerative disorders, while the presence of phosphorylated tau in GVD-harbouring neurons in non-AD neurodegenerative disorders was indistinguishable from age-related accumulation of phosphorylated tau. Although GVDs in non-AD neurodegenerative disorders have not been studied thoroughly, our results suggest that they are not incidental findings, but rather they appear in relation to phosphorylated tau accumulation, further highlighting the role of GVD in the process of phosphorylated tau accumulation

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021

    Get PDF
    This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020–December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population

    Genomic reconstruction of the SARS-CoV-2 epidemic in England.

    Get PDF
    The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021

    SARS-CoV-2 lineage dynamics in England from September to November 2021: high diversity of Delta sub-lineages and increased transmissibility of AY.4.2

    Get PDF
    Background: Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in detecting emerging variants that can more successfully navigate the immune landscape. Methods: We present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. During round 14 (9 September–27 September 2021) and 15 (19 October–5 November 2021) lineages were determined for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the previous month. Results: We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a reproduction number 15% (95% CI 8–23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated with the most predictive COVID-19 symptoms (p = 0.029) and had a reduced mutation rate (p = 0.050). Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England. Conclusions: As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals. © 2022, The Author(s)

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Summary Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine
    corecore