16 research outputs found

    Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests

    Get PDF
    Net primary production (NPP) is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily gridded European climate data set with the MOD17 algorithm to create the regional NPP dataset MODIS EURO. For evaluation of this new dataset, we compare MODIS EURO with terrestrial driven NPP from analyzing and harmonizing forest inventory data (NFI) from 196,434 plots in 12 European countries as well as the global MODIS NPP dataset for the years 2000 to 2012. Comparing these three NPP datasets, we found that the global MODIS NPP dataset differs from NFI NPP by 26%, while MODIS EURO only differs by 7%. MODIS EURO also agrees with NFI NPP across scales (from continental, regional to country) and gradients (elevation, location, tree age, dominant species, etc.). The agreement is particularly good for elevation, dominant species or tree height. This suggests that using improved climate data allows the MOD17 algorithm to provide realistic NPP estimates for Europe. Local discrepancies between MODIS EURO and NFI NPP can be related to differences in stand density due to forest management and the national carbon estimation methods. With this study, we provide a consistent, temporally continuous and spatially explicit productivity dataset for the years 2000 to 2012 on a 1-km resolution, which can be used to assess climate change impacts on ecosystems or the potential biomass supply of the European forests for an increasing bio-based economy. MODIS EURO data are made freely available at ftp://palantir.boku.ac.at/Public/MODIS_EURO.Peer reviewe

    Seemingly Unrelated Mixed-Effects Biomass Models for Young Silver Birch Stands on Post-Agricultural Lands

    No full text
    Secondary succession that occurs on abandoned farmlands is an important source of biomass carbon stocks. Both direct and indirect tree biomass estimation methods are applied on forest lands. Using empirical data from 148 uprooted trees, we developed a seemingly unrelated mixed-effects models system for the young silver birch that grows on post agricultural lands in central Poland. Tree height, biomass of stem, branches, foliage, and roots are used as dependent variables; the diameter at breast height is used as the independent variable. During model elaboration we used restricted cubic spline: 5 knots at the quantiles (0.05, 0.275, 0.5, 0.725, and 0.95) of diameter at breast height provided sufficiently flexible curves for all biomass components. In this study, we demonstrate the use of the model system through cross-model calibration of the biomass component model using tree height measured from 0, 2, 3, and 4 available extreme trees feature in the plot in question. A different number of extreme trees were measured for final model system and our results indicated that for all analyzed components, random-effect predictions are characterized by higher accuracy than fixed-effects predictions

    Comparison of Fixed- and Mixed-Effects Approaches to Taper Modeling for Scots Pine in West Poland

    No full text
    Diameter measurements along the stem, which are the basis for taper models, usually have a hierarchical structure. Mixed-effects models, where fixed and random effects are distinguished, are a possible solution for this type of data. However, in order to fully absorb the potential of this method, random effects prediction, which requires additional measurements (diameter along stem), is recommended. This article presents a comparison of various fitting methods (mixed- and fixed-effects model approaches) of the variable-exponent taper model created by Kozak for determining the outside bark diameter along the stem and predicting the tree volume of Scots pine trees in west Poland. During the analysis, it was assumed that no additional measured data were available for practical use; therefore, for the mixed-effects model approach, fixed effects prediction without random effects was applied. Both fitting strategies were compared based on modeling and an independent validation data set. The comparison of mixed- and fixed-effects fitting strategies for the diameter along the stem indicated that the taper model fitted using the mixed-effects model approach better fit the data. Moreover, the error rate for the total tree volume prediction for the independent data set was lower for the mixed-effects model solution than for the fixed-effects one

    Seemingly Unrelated Mixed-Effects Biomass Models for Black Locust in West Poland

    No full text
    Information about tree biomass is important not only in the assessment of wood resources but also in the process of preparing forest management plans, as well as for estimating carbon stocks and their flow in forest ecosystems. The study aimed to develop empirical models for determining the dry mass of the aboveground parts of black locust trees and their components (stem, branches, and leaves). The research was carried out based on data collected in 13 stands (a total of 38 sample trees) of black locust located in western Poland. The model system was developed based on multivariate mixed-effect models using two approaches. In the first approach, biomass components and tree height were defined as dependent variables, while diameter at breast height was used as an independent variable. In the second approach, biomass components and diameter at breast height were dependent variables and tree height was defined as the independent variable. Both approaches enable the fixed-effect and cross-model random-effect prediction of aboveground dry biomass components of black locust. Cross-model random-effect prediction was obtained using additional measurements of two extreme trees, defined as trees characterized by the smallest and largest diameter at breast height in sample plot. This type of prediction is more precise (root mean square error for stem dry biomass for both approaches equals 77.603 and 188.139, respectively) than that of fixed-effects prediction (root mean square error for stem dry biomass for both approaches equals 238.716 and 206.933, respectively). The use of height as an independent variable increases the possibility of the practical application of the proposed solutions using remote data sources

    Empirical equations for estimating aboveground biomass of Betula pendula growing on former farmland in central Poland

    No full text
    We determined empirical models for estimating total aboveground as well as stem, branches, and foliage dry biomass of young (age up to 16 years) silver birch (Roth.) growing on the post-agricultural lands. Two sets of allometric models for trees with a height below or above 1.3 m (small and large trees respectively) were developed. Simplified models were elaborated based exclusively on appropriate tree diameter (diameter at ground level for small trees, diameter at breast height for large trees), while expanded models also included tree height. Total aboveground biomass was estimated as the sum of biomass of all tree components. To assure additivity of the developed equations, the seemingly unrelated regression approach for the final model fitting was used. Expanded models in both tree groups were characterized by a better fit to the data (Rfor total aboveground biomass for small and large trees equaled 0.8768 and 0.9752, respectively). Diameter at breast height appeared to be a better predictor than diameter at ground level â simplified models had better fit for large trees (R for total aboveground biomass equals 0.9611) than for small ones (Râ=â0.7516). The developed equations provide biomass predictions consistent with available Latvian, Estonian, Finnish, Swedish, and Norwegian models for silver birch.Betula pendula 2 2

    Applying taper function models for black locust plantations in Greek post-mining areas

    No full text
    Abstract A key process in forest management planning is the estimation of tree volume and, more specifically, merchantable volume. The ability to predict the cumulative stem volume relative to any upper stem diameter on standing trees or stands is essential for forest inventories and the management of forest resources. In the 1980s, the Hellenic Public Power Corporation (HPPC) started the rehabilitation of lignite post-mining areas in Greece by planting mainly black locust (Robinia pseudoacacia, L.). Today, these plantations occupy an area of approximately 2570 ha, but the stem volume has not yet been estimated. Therefore, we aimed to estimate the over- and under-bark stem volume using taper function models for 30 destructively sampled trees. Of the nineteen calibrated fixed-effects models, Kozak’s (2004) equation performed best for both the over-bark and under-bark datasets, followed by Lee’s (2003) and Muhairwe’s (1999) equations. Two fixed effect models were compared with fitted coefficients from Poland and the United States confirming that the local model fits were better suited, as the foreign model coefficients caused an increase in root mean square error (RMSE) for stem diameter predictions of 13% and 218%, respectively. The addition of random effects on a single-stem basis for two coefficients of Kozak’s (2004) equation improved the model fit significantly at 86% of the over-bark fixed effect RMSE and 69% for the under-bark model. Integrated taper functions were found to slightly outperform three volume equations for predictions of single stem volume over and under bark. Ultimately it was shown that these models can be used to precisely predict stem diameters and total stem volume for the population average as well as for specific trees of the black locust plantations in the study area
    corecore