2,314 research outputs found

    Vascular complications after liver transplantation: A 5-year experience

    Get PDF
    During the past 5 years, 104 angiographic studies were performed in 87 patients (45 children and 42 adults) with 92 transplanted livers for evaluation of possible vascular complications. Seventy percent of the studies were abnormal. Hepatic artery thrombosis was the most common complication (seen in 42% of children studied, compared with only 12% of adults) and was a major complication that frequently resulted in graft failure, usually necessitating retransplantation. In six children, reconstitution of the intrahepatic arteries by collaterals was seen. Three survived without retransplant. Arterial stenosis at the anastomosis or in the donor hepatic artery was observed in 11% of patients. Portal vein thrombosis or stenosis occurred in 13% of patients. Two children and one adult with portal vein thrombosis demonstrated hepatopetal collaterals that reconstituted the intrahepatic portal vessels. Uncommon complications included anastomotic and donor hepatic artery pseudoaneurysms, a hepatic artery-dissecting aneurysm, pancreaticoduodenal mycotic aneurysms, hepatic artery-portal vein fistula, biliary-portal vein fistula, hepatic vein occlusion, and inferior vena cava thrombosis

    A Computational Comparison of Optimization Methods for the Golomb Ruler Problem

    Full text link
    The Golomb ruler problem is defined as follows: Given a positive integer n, locate n marks on a ruler such that the distance between any two distinct pair of marks are different from each other and the total length of the ruler is minimized. The Golomb ruler problem has applications in information theory, astronomy and communications, and it can be seen as a challenge for combinatorial optimization algorithms. Although constructing high quality rulers is well-studied, proving optimality is a far more challenging task. In this paper, we provide a computational comparison of different optimization paradigms, each using a different model (linear integer, constraint programming and quadratic integer) to certify that a given Golomb ruler is optimal. We propose several enhancements to improve the computational performance of each method by exploring bound tightening, valid inequalities, cutting planes and branching strategies. We conclude that a certain quadratic integer programming model solved through a Benders decomposition and strengthened by two types of valid inequalities performs the best in terms of solution time for small-sized Golomb ruler problem instances. On the other hand, a constraint programming model improved by range reduction and a particular branching strategy could have more potential to solve larger size instances due to its promising parallelization features

    Horizontal partial laryngectomy for supraglottic squamous cell carcinoma

    Get PDF
    Between 1981-1999, 75 patients treated for supraglottic SCC with horizontal supraglottic laryngectomy (HSL) at the Otolaryngology Head and Neck Surgery Department of Lausanne University Hospital were retrospectively studied. There were 16 patients with T1, 46 with T2 and 13 with T3 tumors. Among these, 16 patients (21%) had clinical neck disease corresponding to stage I, II, III and IV in 12, 39, 18 and 6 patients, respectively. All patients had HSL. Most patients had either elective or therapeutic bilateral level II-IV selective neck dissection. Six patients (8%) with advanced neck disease had ipsilateral radical and controlateral elective II-IV selective neck dissections. Adjuvant radiotherapy was given to 25 patients (30%) for either positive surgical margins (n=8), pathological nodal status (n=14) or both (n=3). Median follow-up was 48months (range, 24-199). Five-year disease-specific survival and locoregional and local control were 92, 90 and 92.5%, respectively. Among five patients who were diagnosed with local recurrence, one had a total laryngectomy (1.4%); the others were treated by endoscopic laser surgery. Two patients had both a local and regional recurrence. They were salvaged with combined surgery and radiotherapy, but eventually died of their disease. Cartilage infiltration seems to influence both local control (P=0.03) and disease-specific survival (P=0.06). There was a trend for worse survival with pathological node involvement (P=0.15) and extralaryngeal extension of the cancer (P=0.1). All patients except one recovered a close to normal function after the treatment. Aspiration was present in 16 patients (26%) in the early postoperative period. A median of 16days (7-9) was necessary to recover a close to normal diet. Decannulation took a median of 17days (8-93). Seven patients kept a tracheotomy tube for up to 3months because of persistent aspiration. There was no permanent tracheostomy or total laryngectomy for functional purposes. Horizontal supraglottic laryngectomy remains an adequate therapeutic alternative for supraglottic squamous cell carcinoma, offering an excellent oncological outcome. The postoperative functional morbidity is substantial, indicating the need for careful patient selection, but good laryngeal function recovery is the rule. The surgical alternative is endoscopic laser surgery, which may offer comparable oncological results with less functional morbidity. Nevertheless, these two different techniques need to be compared prospectivel

    Similar ex vivo expansion and post-irradiation regenerative potential of juvenile and aged salivary gland stem cells

    Get PDF
    AbstractBackground and purposeSalivary gland dysfunction is a major side effect of radiotherapy for head and neck cancer patients, which in the future might be salvaged by autologous adult salivary gland stem cell (SGSC) therapy. Since frail elderly patients may have decreased activity of SGSCs, we aimed to characterize the potential of aged SGSC-population in a murine model.Materials and methodsSalivary glands and salisphere-derived cells from young and old mice were tested for CD24 and CD29 stem cell marker expression using FACS. Moreover, in vitro expansion capability and in vivo regeneration potential upon post-irradiation transplantation of young and aged SGSCs were measured.ResultsAn increase in CD24hi/CD29hi putative stem cells was detected in aged salivary glands albeit with a decrease in functional ability to form salispheres. However, the salispheres formed from aged mice salivary glands expressed CD24hi/CD29hi to the same extent as the ones from young mice. Moreover, following exposure to adequate growth conditions old and young SGSCs exhibited similar in vitro expansion- and in vivo regeneration potential.ConclusionsAged SGSCs although reduced in number are in vitro indistinguishable from young SGSCs and could potentially be used to ameliorate age- or treatment related salivary gland dysfunction

    Antagonism of the proinflammatory and pronociceptive actions of canonical and biased agonists of protease-activated receptor-2

    Get PDF
    Diverse proteases cleave protease-activated receptor-2 (PAR2) on primary sensory neurons and epithelial cells to evoke pain and inflammation. Trypsin and tryptase activate PAR2 by a canonical mechanism that entails cleavage within the extracellular N-terminus revealing a tethered ligand that activates the cleaved receptor. Cathepsin-S and elastase are biased agonists that cleave PAR2 at different sites to activate distinct signalling pathways. Although PAR2 is a therapeutic target for inflammatory and painful diseases, the divergent mechanisms of proteolytic activation complicate the development of therapeutically useful antagonists

    A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis

    Get PDF
    Bacteria need dedicated systems that allow appropriate adaptation to the perpetual changes in their environments. In Bacillus subtilis, two HtrA-like proteases, HtrA and HtrB, play critical roles in the cellular response to secretion and heat stresses. Transcription of these genes is induced by the high-level production of a secreted protein or by a temperature upshift. The CssR-CssS two-component regulatory system plays an essential role in this transcriptional activation. Transcription of the cssRS operon is autoregulated and can be induced by secretion stress, by the absence of either HtrA or HtrB, and by heat stress in a HtrA null mutant strain. Two start sites are used for cssRS transcription, only one of which is responsive to heat and secretion stress. The divergently transcribed htrB and cssRS genes share a regulatory region through which their secretion and heat stress-induced expression is linked. This study shows that CssRS-regulated genes represent a novel class of heat-inducible genes, which is referred to as class V and currently includes two genes: htrA and htrB

    Towards the pressure and material gap in heterogeneous catalysis: hydrogenation of acrolein over silver catalysts

    No full text
    Introduction In recent time, increasing effort has been undertaken in order to answer the question, whether it is justified to transfer results from surface science studies, mostly obtained with idealised surfaces under UHV conditions, to "real" catalysis, i.e. high pressures and complex materials (the so-called pressure and material gaps). The DFG (German research foundation) has initialised a priority program (SPP 1091) in order to bring together experts from surface science, materials science, catalysis and theory with the aim of bridging the two gaps in catalysis. Within this priority program, we are currently studying the hydrogenation of acrolein over silver. Acrolein, an ,-unsaturated aldehyde, can be hydrogenated either to propanal (product of C=C-bond hydrogenation) or to allyl alcohol (product of C=O-bond hydrogenation. Whereas typical hydrogenation catalysts like Pt, Ru or Ni mainly produce the saturated aldehyde, selectivities to allyl alcohol of up to 53 % can be obtained when using monometallic silver (or gold) catalysts [ , ]. The aim of our studies is to clarify the influence of reaction pressure and material on the selectivity distribution in the acrolein hydrogenation. Catalytic experiments have been carried out with differently structured samples from single crystals to disperse Ag/support catalysts in a broad pressure range (few mbar up to 20 bar). Various methods like in situ-XAS and XPS, flow-adsorption calorimetry, infrared spectroscopy, and transient analysis of products (TAP) are performed in order to gain insight into the modes of interaction of acrolein and hydrogen with differently structured silver samples. Effects of particle size and shape are also considered as well as the influence of the support material. Experimental and Results would add a few words about the composition (Ag loading, different supports) / preparation of the catalysts and/or a reference Gas phase hydrogenation of acrolein has been carried out in a flow reaction system allowing a pressure in the range from 150 mbar up to 20 bar. When using silica supported silver catalysts, clear relations can be drawn concerning the pressure and material dependence of the selectivity to allyl alcohol: increasing partial pressure of either reactant (hydrogen or acrolein) leads to increased selectivity to allyl alcohol, also, smaller particles favour its formation. However, when using ZnO-supported catalysts, the situation becomes more complex. Catalysts prepared with the same catalyst loading and the same catalyst preparation technique but with different ZnO support materials yielded different selectivities to allyl alcohol at the same conversion. On the other hand, catalysts prepared from different precursors, but with the same support, lead to different activities but similar selectivities to allyl alcohol. TEM investigations of the Ag/ZnO and Ag/SiO2 catalysts reveal, that the particle sizes of the silica-supported catalysts are much smaller (2 nm and 15 nm in average for the two most intensively studied catalysts) whereas the silver particles in the Ag/ZnO catalysts are surprisingly large (50 nm up to several hundreds of nm). This is even more surprising since the activities of the catalysts are in the same order of magnitude, with the SiO2 catalysts however, being a bit more active. All these results indicate, that the product distribution at supported silver catalysts is governed by a complex interplay between particle size (and/or shape), pressure, and, as the obviously most important factor, the support and the interactions between silver and support. To gain more insight into the reasons for the catalytic behaviour of the Ag/support catalysts, the interaction of hydrogen alone with various silver samples has been studied. TAP (temporal analysis of products) indicates, that hydrogen interacts with nanodisperse Ag/SiO2 samples, but not with larger unsupported silver particles (several mm in size) like those from electrolyte silver. However, as monitored by transmission infrared spectroscopy, not only the Ag nanoparticles but also the SiO2 support interacts with hydrogen. SiO2 and Ag/SiO2 samples, after reduction and exposure to 100 mbar D2, show a reversible H-D-exchange, as monitored by the Si-O-H(D) bands. Time resolved IR spectra indicate, that this H-D-exchange is faster at silver-containing samples. From temperature-dependent measurements, activation energies for the H-D-exchange of ca. 28 kJ/mol for Ag/SiO2 and ca. 38 kJ/mol for SiO2 have been calculated. The interaction of acrolein with silver single crystals as well as with supported catalysts has been studied with in-situ-XAS and in-situ XPS. For both techniques the samples were contacted with mixtures of H2/acrolein in the mbar pressure range. Angular dependent XAS measurements on a Ag(111) single crystal indicated that acrolein is in the lying-down orientation. For all the samples measured the 1π* “C=O” transition is clearly increased compared to the 1π* “C=C”. Consequently, the surface concentration of C=O bonds relative to C=C bonds is higher, which is in line with concomitantly measured mass spectrometric data showing high selectivity towards C=C hydrogenation. In-situ XPS revealed that while silver foil is partly oxidic (~5%) the supported silver particles are completely reduced, as Ag is in the zero valence state. Data indicate also small amount of oxygen removal from the ZnO supported samples during the contact with hydrogen. The combination of different results suggests that metal-support interaction plays an important role in the reaction. The major difference in hydrogen activation between supported catalysts and pure silver/support provides us a hint that the so-called “adlineation sites” (the perimeter interface between silver and support) are the key sites in the mechanism
    • …
    corecore