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ABSTRACT 

Background and Purpose. Diverse proteases cleave protease-activated receptor 2 (PAR2) 

on primary sensory neurons and epithelial cells to evoke pain and inflammation. Trypsin and 

tryptase activate PAR2 by a canonical mechanism that entails cleavage within the 

extracellular N-terminus revealing a tethered ligand that activates the cleaved receptor. 

Cathepsin-S and elastase are biased agonists that cleave PAR2 at distinct sites to initiate 

different signaling pathways. Although PAR2 is a therapeutic target for inflammatory and 

painful diseases, the divergent mechanisms of proteolytic activation complicate the 

development of therapeutically useful antagonists. 

Experimental Approach. We investigated whether the PAR2 antagonist N-[(2S)-3-

cyclohexyl-1-[[(2S,3R)-3-methyl-1-oxo-1-spiro[indene-1,4'-piperidine]-1'-ylpentan-2-yl]amino]-

1-oxopropan-2-yl]-1,2-oxazole-5-carboxamide (GB88) inhibits protease-evoked activation of 

nociceptors and protease-stimulated oedema and hyperalgesia in rats and mice. 

Key Results. Intraplantar injection of trypsin, cathepsin-S and elastase stimulated 

mechanical and thermal hyperalgesia and oedema in mice. Oral GB88 or Par2 deletion 

inhibited the algesic and proinflammatory actions of canonical and biased proteases, but did 

not affect basal responses. GB88 prevented pronociceptive and proinflammatory effects of 

the PAR2-selective agonists 2-furoyl-LIGRLO-NH2 and AC264613. GB88 did not affect 

capsaicin-evoked hyperalgesia or inflammation. Trypsin, cathepsin-S and elastase increased 

[Ca2+]i in rat nociceptors, which expressed PAR2. GB88 inhibited activation of nociceptors by 

canonical and biased proteases, but did not affect capsaicin-evoked activation of nociceptors. 

GB88 did not affect trypsin or elastase activities, and inhibited cathepsin-S activity only at 

high concentrations. 

Conclusions and Implications. GB88 inhibits the capacity of canonical and biased 

proteases to activate nociceptors and cause pain and inflammation.   



INTRODUCTION 

Serine, cysteine and metallo-proteases can signal to cells by cleaving protease-

activated receptors (PARs), a family of four G-protein coupled receptors (PAR1-4) (Hollenberg 

et al., 2014; Ossovskaya et al., 2004; Zhao et al., 2014b). PAR2 is expressed by epithelial, 

endothelial and smooth muscle cells, as well as by cells of the immune and nervous systems 

(Bohm et al., 1996; Nystedt et al., 1995; Nystedt et al., 1994). Proteases that activate PAR2 

in primary sensory neurons stimulate the release of substance P and calcitonin-gene-related 

peptide in peripheral tissues, leading to neurogenic inflammation (Steinhoff et al., 2000). 

PAR2 can also sensitize and activate transient receptor potential (TRP) ion channels in 

primary sensory neurons, including TRP vanilloid 1 and 4 (TRPV1, TRPV4) and ankyrin 1 

(TRPA1) (Amadesi et al., 2006; Amadesi et al., 2004; Dai et al., 2004; Dai et al., 2007; Grant 

et al., 2007; Poole et al., 2013), which results in central transmission, neuropeptide release in 

the spinal cord, and pain transmission (Vergnolle et al., 2001). Proteases that activate PAR2 

on epithelial cells can promote disassembly of tight junctions (Jacob et al., 2005), induce 

cyclooxygenase 2 (Wang et al., 2008), and stimulate release of proinflammatory cytokines 

(Wang et al., 2010). PAR2 deletion abrogates inflammatory and painful disorders of the 

airways, joints, colon and skin (Cattaruzza et al., 2011; Cottrell et al., 2007; Ferrell et al., 

2003; Lindner et al., 2000; Schmidlin et al., 2002; Shichijo et al., 2006). These observations 

suggest that PAR2 is an important target for inflammatory and painful disorders. However, 

the development of therapeutically useful antagonists is hampered by the unusual 

mechanism of PAR2 activation. 

The canonical mechanism by which trypsin and tryptase activate PAR2 involves 

hydrolysis of Arg36↓Ser37 and exposure of the tethered ligand S37LIGKV (human PAR2), 

which binds to and activate the cleaved receptor (Bohm et al., 1996; Corvera et al., 1997; 

Nystedt et al., 1994). Synthetic peptides that mimic the tethered ligand can directly activate 

PAR2 and are useful tools to probe receptor function. Trypsin-activated PAR2 couples to Gαq 

and phospholipase Cβ, leading to mobilization of intracellular calcium and activation of 

protein kinases (PK) C and D ((Amadesi et al., 2006; Amadesi et al., 2009). Trypsin-activated 



PAR2 also recruits G protein receptor kinase 2 and β-arrestins, which mediate PAR2 

endocytosis and ERK1/2 signaling from endosomes (Ayoub et al., 2013; DeFea et al., 2000; 

Dery et al., 1999; Jensen et al., 2013). The development of PAR2 antagonists is complicated 

by this mechanism of intramolecular receptor activation by a proteolytically-exposed tethered 

ligand. Another complication is the existence of divergent mechanisms of proteolytic 

activation (Hollenberg et al., 2014; Zhao et al., 2014b). Proteases that cleave PAR2 distal to 

the canonical cleavage site can disarm the receptor by removing the trypsin-exposed 

tethered ligand. Thus, neutrophil/leukocyte elastase cleaves PAR2 at Ser67↓Val68, which 

removes the trypsin cleavage site and thereby blocks the ability for trypsin to activate the 

receptor (Dulon et al., 2003; Ramachandran et al., 2011). However, proteases that cleave 

PAR2 at distinct sites within the N-terminal domain can reveal different tethered ligands or 

stabilize unique receptor conformations, and can thereby act as biased agonists that promote 

PAR2 coupling to divergent signaling pathways. Cathepsin-S (Cat-S), a cysteine protease 

secreted by antigen-presenting cells, cleaves PAR2 at Glu56↓Thr57, to reveal a distinct 

tethered ligand that promotes PAR2 coupling to Gαs, adenylyl cyclase, cAMP and PKA, but 

not to Gαq and β-arrestins (Zhao et al., 2014a). Cat-S can also cleave PAR2 at Gly41↓Lys42 

(Elmariah et al., 2014). Elastase is also a biased agonist that promotes PAR2 coupling to 

Gαs, adenylyl cyclase, cAMP and PKA, but not to Gαq and β-arrestins, although elastase 

does not activate PAR2 by a tethered ligand mechanism (Ramachandran et al., 2011; Zhao 

et al., 2015). Despite these divergent mechanisms of PAR2 activation, canonical and biased 

proteases cause PAR2- and TRPV4-dependent inflammation and pain (Grant et al., 2007; 

Poole et al., 2013; Zhao et al., 2014a; Zhao et al., 2015). Thus, a requirement of 

therapeutically useful antagonists is that they disrupt the capacity of diverse proteases to 

activate PAR2 by canonical and biased mechanisms. 

Although antibodies that target the canonical PAR2 cleavage site have efficacy in 

preclinical models of inflammatory disease (Kelso et al., 2006), it is uncertain whether they 

can block activation of the receptor by biased proteases that cleave at distant sites. The 

small molecule PAR2 antagonist ENMD-1068 and peptidomimetic antagonists based on the 



canonical tethered ligand domain, including K-14585 and C391, can also inhibit PAR2-

mediated inflammation and pain, but their ability to suppress biased mechanisms of PAR2 

activation has not been explored (Boitano et al., 2015; Goh et al., 2009; Kelso et al., 2006). 

GB83 and GB88 are small molecules that can inhibit PAR2 activation by trypsin and tethered 

ligand-derived agonists, and are efficacious in preclinical models of inflammatory disease 

(Barry et al., 2010; Lohman et al., 2012a; Lohman et al., 2012b; Suen et al., 2012). However, 

it is not known whether GB88 can antagonize the actions of canonical and biased agonists of 

PAR2 on nociceptor activity and nociception. We examined the effects of GB88 on the 

capacity of canonical and biased proteases to activate nociceptors and induce pain and 

inflammation. 

 

METHODS  

Materials. GB88 (N-[(2S)-3-cyclohexyl-1-[[(2S,3R)-3-methyl-1-oxo-1-spiro[indene-1,4'-

piperidine]-1'-ylpentan-2-yl]amino]-1-oxopropan-2-yl]-1,2-oxazole-5-carboxamide) was 

prepared as described (Barry et al., 2010; Suen et al., 2012). The PAR2 agonists 2-furoyl-

LIGRLO-NH2 was from American Peptide Company Inc. (Sunnyvale, CA) and AC264613 

was from Tocris Biosciences (Bristol, UK). Human pancreatic trypsin (100,000 U/ml) was 

from Sigma-Aldrich (St. Louis, MO). Human Cat-S (0.4 U/ml) was a gift from Medivir AB 

(Huddinge, Sweden) and has been described (Zhao et al., 2014a). Human sputum elastase 

(864 U/mg) was from Elastin Products Company (Owensville, MO). Fluorogenic protease 

substrates were from Bachem AG (Budendorf, Switzerland): trypsin, H-D-Ala-Leu-Lys-AMC; 

elastase, MeOSuc-Ala-Ala-Pro-Val-AMC; Cat-S, Bock-Val-Leu-Lys-AMC. The activity-based 

protease probes Cy5-ProLys-diphenyl phosphonate (PK-DPP), Cy5-Val-diphenyl 

phosphonate (V-DPP) and BMV109 were synthesized as described (Gilmore et al., 2009; 

Pan et al., 2006; Verdoes et al., 2013). Unless otherwise indicated, other reagents were from 

Sigma-Aldrich (St. Louis, MO). 

Animals. The Animal Ethics Committee of Monash University approved procedures using 

animals. Male C57BL/6, Par2-/- and Par2+/+ littermates (Lindner et al., 2000) (8-12 weeks),  



and male Sprague-Dawley rats (7-8 weeks) were studied. Animals were maintained under 

temperature (22±4°C) and light- (12 h light/dark cycle) controlled conditions with free access 

to food and water. 

Mechanical hyperalgesia and oedema. Mice were placed in individual cylinders on a mesh 

stand. They were acclimatized to the experimental room, restraint apparatus, and 

investigator for 2 h periods on 2 successive days before experiments. To assess mechanical 

pain, paw withdrawal in response to stimulation of the plantar surface of the hind paw with 

graded von Frey filaments (0.078, 0.196, 0.392, 0.686, 1.569, 3.922, 5.882, 9.804, 13.725, 

and 19.608 mN) was determined using the “up-and-down” paradigm (Alemi et al., 2013; 

Chaplan et al., 1994). In this analysis, an increase in the filament stiffness required to induce 

paw withdrawal indicates mechanical analgesia, whereas a decrease in the filament stiffness 

required to induce withdrawal indicates mechanical hyperalgesia. On the day before the 

study, von Frey scores were measured in triplicate to establish a baseline for each animal. 

To assess inflammatory oedema of the paw, hind paw thickness was measured using digital 

callipers before and after treatments (Alemi et al., 2013).  

Thermal hyperalgesia. For studies of thermal hyperalgesia, paw withdrawal latencies to 

thermal stimulation of one hind paw was measured in unrestrained mice using Hargreaves’s 

apparatus (Amadesi et al., 2004; Hargreaves et al., 1988). An increase in latency indicates 

thermal analgesia, whereas a decrease in latency indicates thermal hyperalgesia. Mice were 

acclimatized to the Hargreaves’ apparatus for 1 h, and then baseline readings were collected.  

PAR2 antagonist and agonists. Investigators were blinded to the experimental treatments. 

GB88 (10 mg/kg) or vehicle (control, 0.9% NaCl) was administered by gavage (150 µl) 2 h 

before intraplantar injections. For intraplantar injections, mice were sedated with 5% 

isoflurane. Trypsin (140 nM, 0.04 U/µl), elastase (1.18 µM, 0.03 U/µl), Cat-S (2.5 µM,  0.06 

U/µl), 2-furoyl-LIGRLO-NH2 (64 µM, 50 ng/µl), AC264613 (250 µM, 100 ng/µl), capsaicin (1.6 

µM, 0.5 ng/µl) or vehicle (0.9% NaCl) was injected subcutaneously into the plantar surface of 

the left hind paw (10 µl). Mechanical hyperalgesia, paw thickness and thermal hyperalgesia 

were measured hourly for 4 h. 



In situ hybridization. cDNAs for mouse and rat PAR2 were amplified by RT-PCR using RNA 

from mouse or rat colon. The following forward and reverse primers were used: mouse 

PAR2, CACCGGGACGCAACAACAGTAAAG (mPar2_F199) and 

GAATTCTAATACGACTCACTAT 

AGGGAGATATGCAGCTGTTGAGGGTCGACAG (mPar2_R1136_T7); rat PAR2, 

GAATGCACCGGGACCCAACAGTAA (rPAR2_F165) and GAATTCTAATACGACTCACTAT 

AGGGAGATGGAGGTGAGCGATATCTGCATGC (rPAR2_R1216_T7). The design of the 

reverse primers included the T7 promoter sequence (underlined), which allowed the PCR 

products to be used directly for the generation of digoxigenin (DIG)-labelled antisense cRNA 

probes by in vitro transcription with T7 RNA polymerase (Roche Products, Dee Why, NSW). 

Sections (12 µm) of mouse and rat dorsal root ganglia (DRG) or trigeminal ganglia (levels) 

were processed for combined in situ hybridisation and immunofluorescence as described 

(Bron et al., 2014; Lieu et al., 2014). The following primary antibodies were used: rabbit anti-

CGRP (Sigma #C8198; 1:2,000), mouse anti-heavy chain neurofilament (NF200, Sigma; 

#N0142; 1,000). Biotinylated isolectin B4 (IB4) was from Sigma (#L2140). Secondary 

antibodies used were donkey ant-mouse-Alexa-488 (1:500), donkey anti-rabbit-Alexa568 

(1:1,000) and streptavidin-Alexa647 (1:500) (Thermofisher Scientific, Carlsbad, CA). 

Sections were examined and photographed using 10x or 20x objective magnification on a 

Zeiss Axioskope.Z1 fluorescence microscope (Zeiss, Oberkocken, Germany). Digitized 

images were processed using the Zeiss Zen software and exported as TIFF files to Adobe 

Photoshop for figure preparation. 

Dissociation of DRG neurons. DRG neurons were collected from Sprague Dawley rats. 

Neurons were dispersed as described with modifications (Zhao et al., 2014a; Zhao et al., 

2015). Briefly, DRG from all levels were incubated with collagenase IV (2 mg/ml), dispase II 

(2 mg/ml) and DNase I (100 µg/ml) for 40 min at 37°C. Cells were centrifuged (5 min, 500 g), 

re-suspended in Hanks Balanced Salt Solution (HBSS), and filtered through a 40 µm nylon 

mesh. Filtered cells were centrifuged, re-suspended in 1 ml of HBSS, and layered onto a 

20% Percoll solution comprising 1 ml Percoll and 4 ml L-15 (Lebovitz) medium 



(ThermoFisher Scientific). The gradient was centrifuged (9 min, 800 g). The supernatant was 

removed and the cell pellet was washed with 10 ml of L-15. Neurons were plated onto 96 

well plates coated with laminin (0.004 mg/ml) and poly-D-lysine (0.1 mg/ml). Neurons were 

cultured in L-15 Lebovitz medium containing 10% foetal calf serum, with penicillin and 

streptomycin and maintained at 37ºC for 16 h. 

Measurement of [Ca2+]i in DRG neurons. Neurons were loaded with Fura-2/AM (2 µM) for 

1.5 h at 37°C. Neurons were mounted in microincubator in calcium buffer (150 mM NaCl, 2.6 

mM KCl, 0.1 mM CaCl2, 1.18 mM MgCl2, 10 mM D-glucose, 10 mM HEPES, pH 7.4) at 37°C 

on the stage of a Leica DMI6000B microscope equipped with a PL APO ×20 NA0.75 

objective (Leica Microsystems, North Ryde, NSW). Fluorescence was measured at 340 and 

380 nm excitation with 530 nm emission using an Andor iXon 887 camera (Andor 

Technology, Belfast) and MetaFluor version 7.8.0 software (Molecular Devices, Sunnyvale, 

CA). Neurons were challenged sequentially with trypsin (10 nM, 2.85 mU/ µl), elastase (100 

nM, 2.54 mU/µl), or Cat-S (100 nM, 2.4 mU/µl), followed by capsaicin (1 µM) and KCl (50 

mM). In some experiments, neurons were pre-treated with GB88 (10 µM) or vehicle (control) 

for 30 min before stimulation with proteases. Images were analysed using a custom journal 

in MetaMorph software version 7.8.2. A maximum intensity image was generated and 

projected through time to generate an image of all cells. Cells were segmented and binarised 

from this image using the Multi Wavelength Cell Scoring module on the basis of size and 

fluorescence intensity. Neurons of interest (<25 µm diameter) were selected. Results are 

expressed as the proportion of capsaicin- and KCl-responsive neurons that also responded 

to proteases. 

Fluorogenic protease assays. GB88 (10 µM) was pre-incubated with the appropriate 

fluorogenic substrate (50 µM):  trypsin, H-D-Ala-Leu-Lys-AMC; elastase, MeOSuc-Ala-Ala-

Pro-Val-AMC, Cat-S: Bock-Val-Leu-Lys-AMC. Proteases were added to give final 

concentrations of 10 nM trypsin, 100 nM elastase, or 100 nM Cat-S. Substrate cleavage was 

assessed by measuring fluorescence during the initial 60-120 s (ex/em 360/440 nm). The 

slope was determined in the linear range and presented as a percentage of the control.  



Covalent activity-based probe protease assays. Recombinant proteases (100 ng) were 

diluted in 20 µl PBS containing GB88 (0, 1, 10 or 100 µM) and DMSO (1%), and were 

incubated for 30 min at 37°C. The appropriate activity-based probes were added: trypsin, 

PK-DPP (1 µM); elastase, V-DPP (1 µM), Cat-S, BMV109 (100 nM) (Gilmore et al., 2009; 

Pan et al., 2006; Verdoes et al., 2013). Proteases were incubated with activity-based probes 

for 5 min at 37°C, solubilized with sample buffer, boiled, and separated on a 15% SDS-

PAGE gel. Probe labelling was detected by scanning gels for Cy5 fluorescence using a 

Typhoon FLA 7000 Scanner (GE Healthcare, Parramatta, NSW). 

Statistical Analyses. Results are expressed as mean ± SEM. Data were analysed in 

GraphPad Prism 6.0using Student's t-test or ANOVA followed by Dunnett’s post hoc test. 

Differences between means with a P-value <0.05 were considered significant. 

 

RESULTS 

GB88 antagonism of the proinflammatory and pronociceptive actions of canonical and 

biased protease agonists of PAR2. Proteases that cleave PAR2 at different sites within the 

extracellular N-terminal domain can activate canonical or biased pathways of signaling 

(Hollenberg et al., 2014; Ramachandran et al., 2011; Zhao et al., 2014a; Zhao et al., 2015; 

Zhao et al., 2014b). Although PAR2 deletion attenuates the pronociceptive and 

proinflammatory actions of trypsin, tryptase, elastase and Cat-S (Vergnolle et al., 2001; Zhao 

et al., 2014a; Zhao et al., 2015), a pharmacological inhibitor pain and inflammation evoked 

by biased proteases has not been identified. We evaluated whether GB88 inhibits trypsin-, 

elastase- and Cat-S-evoked pain and inflammation in mice. 

Intraplantar injection of trypsin stimulated an 11.5 ± 1.8% increase in paw thickness 

within 1 h that was sustained for 4 h, indicative of oedema (Fig. 1A). Trypsin reduced the von 

Frey response from 2-4 h, consistent with mechanical hyperalgesia (Fig. 1B), and decreased 

the latency of paw withdrawal to heat from 3-4 h, indicating thermal hyperalgesia (Fig. 1C). 

Oral administration of GB88 2 h before injection of trypsin reduced the effects of trypsin on 



paw thickness by ~50%, and prevented trypsin-evoked mechanical and thermal hyperalgesia 

(Fig. 1 A-C). 

Intraplantar Cat-S caused a 16.3 ± 3.9% increase in paw thickness within 1 h, which 

was sustained for 4 h (Fig. 1D). Cat-S reduced the von Frey response from 1-4 h (Fig. 1E), 

and decreased latency time to paw withdrawal from heat at 2-4 h (Fig. 1F). GB88 abolished-

Cat-S evoked oedema, and attenuated Cat-S-stimulated mechanical and thermal 

hyperalgesia (Fig. 1 D-F). 

Intraplantar elastase caused a 9.49 ± 2.8 % increase of paw thickness at 1 h that was 

sustained for 4 h (Fig. 1G). Elastase reduced the von Frey response from 2-3 h, consistent 

with mechanical hyperalgesia (Fig. 1H). In contrast to trypsin and Cat-S, elastase did not 

evoke thermal hyperalgesia (Fig. 1I). GB88 attenuated elastase-induced oedema and 

mechanical hyperalgesia (Fig. 1 G-I). 

Intraplantar injection of vehicle did not induce oedema or mechanical hypersensitivity, 

and GB88 did not affect baseline paw thickness (Fig. 2 A) or mechanical sensitivity (Fig. 2 B). 

 Thus, GB88 inhibits the proinflammatory and pronociceptive actions of proteases that 

activate PAR2 by canonical and biased mechanisms. 

GB88 antagonism of the proinflammatory and pronociceptive actions of PAR2 

agonists. Synthetic peptides that mimic the trypsin-exposed tethered ligand can directly 

activate PAR2. Like trypsin, these activating peptides induce PAR2 coupling to Gαq and β-

arrestins, sensitize TRP channels, and cause inflammation and pain (Amadesi et al., 2006; 

Dai et al., 2007; Grant et al., 2007; Poole et al., 2013; Steinhoff et al., 2000; Vergnolle et al., 

2001). We investigated whether GB88 inhibits the proinflammatory and algesic actions of 2-

furoyl-LIGRLO-NH2, an analogue of the tethered ligand domain (Kanke et al., 2005), and 

AC264613, a small molecule agonist of PAR2 that elicits thermal hyperalgesia and oedema 

(Gardell et al., 2008). 

Intraplantar injection of 2-furoyl-LIGRLO-NH2 caused a 20.7 ± 2.8% paw thickness at 

the 1 h, which was sustained for 4 h (Fig. 3A). 2-furoyl-LIGRLO-NH2 reduced the von Frey 

withdrawal response from 2-4 h, indicative of mechanical hyperalgesia (Fig. 3B). GB88 



abolished 2-furoyl-LIGRLO-NH2-evoked oedema and reduced mechanical hyperalgesia by 

30% (Fig. 3A, B). 

Intraplantar injection of AC264613 induced a 10.3 ± 1.9 % increase in paw thickness 

at 1 h that was persistent for 4 h (Fig. 3C). AC264613-evoked robust mechanical 

hyperalgesia at 1 h that was persistent for 4 h (Fig. 3D). GB88 prevented AC264613-

stimulated inflammation and pain (Fig. 3C, D). 

Thus, GB88 inhibits the effects of small molecule synthetic agonists of PAR2 on 

inflammation and pain. 

Effects of GB88 on capsaicin-evoked inflammation and pain. The capacity of GB88 to 

inhibit protease- and PAR2-evoked inflammation and nociception could be due to antagonism 

of PAR2 or a downstream mediator, such as TRP channels. TRPV1 is a downstream target 

of PAR2 that contributes to the effects of proteases on inflammation and nociception 

(Amadesi et al., 2004, Dai 2004). Capsaicin directly activates TRPV1 on primary sensory 

neurons to cause neurogenic inflammation and pain (Caterina et al., 1997). We examined 

whether GB88 affects capsaicin-induced inflammation and nociception. Intraplantar injection 

of capsaicin evoked a 54.8 ± 3.7% increase in paw thickness within 1 h that was persistent 

for 4 h (Fig. 4A). Capsaicin also induced a robust mechanical hyperalgesia at 1 h that was 

sustained for 4 h (Fig. 4B). GB88 had no effects on capsaicin-stimulated oedema and 

mechanical hyperalgesia (Fig. 4A, B). Thus, the anti-inflammatory and analgesic actions of 

GB88 are not due to antagonism of TRPV1, since the proinflammatory and nociceptive 

effects of capsaicin were unaffected.  

Effects of GB88 on inflammation and pain in PAR2-deficient mice. Par2 deletion 

attenuates the effects of trypsin, Cat-S and elastase on oedema and hyperalgesia (Vergnolle 

et al., 2001; Zhao et al., 2014a; Zhao et al., 2015). Since Par2 deletion does not completely 

inhibit Cat-S-evoked inflammation and pain (Zhao et al., 2014a), we examined whether GB88 

has residual actions in Par2
-/- mice, which could suggest additional actions that are unrelated 

to PAR2 antagonism. In wild-type mice, Cat-S evoked an 18.7± 3.2% increase paw thickness 

(Fig. 5 A) and a sustained mechanical hyperalgesia (Fig. 5 B). GB88 reduced Cat-S-induced 



oedema and hyperalgesia. GB88 inhibited Cat-S-evoked oedema and mechanical 

hyperalgesia to the same extent in Par2
+/+ and Par2

-/- mice. The inability of GB88 to exert 

additional anti-inflammatory and antinociceptive effects in Par2
-/- mice suggests the actions of 

GB88 are mediated by antagonism of PAR2. 

Expression of PAR2 in nociceptors. Proteases can evoke neurogenic inflammation and 

pain directly by activating PAR2 on primary sensory neurons (Steinhoff et al., 2000), or 

indirectly by releasing stimulants from keratinocytes, which express high levels of PAR2 

(Steinhoff et al., 1999). We used in situ hybridization to examine the expression of PAR2 

mRNA by the primary sensory neurons in dorsal root and trigeminal ganglia of rat and mouse. 

In mouse, PAR2 was detected at low levels in DRG neurons (data not shown), but was more 

prominently expressed in trigeminal neurons (Fig. 6A). In rat, PAR2 mRNA was readily 

detected in DRG neurons (Fig. 6B, C). PAR2-positive neurons were small diameter, and 

included peptidergic neurons expressing immunoreactive CGRP and non-peptidergic 

neurons that bound IB4 (Fig. 6C-G). PAR2-positive neurons did not express NF200, a marker 

for large diameter neurons. Thus, PAR2 is present in rat nociceptors. 

GB88 antagonism of activation of nociceptors by canonical and biased protease 

agonists of PAR2. To determine whether GB88 can attenuate the actions of canonical and 

biased proteases on nociceptors, we examined protease-evoked Ca2+ signaling in DRG 

neurons in short-term culture. We studied neurons from rats rather than mice due to the 

higher expression of PAR2 in rat nociceptors (Fig. 6) and because PAR2 agonists generated 

larger signals in a higher proportion of DRG neurons from rats than mice (not shown). We 

have previously reported that canonical (trypsin, tryptase) and biased (Cat-S, elastase) can 

evoke PAR2-dependent Ca2+ signals in DRG neurons (Steinhoff et al., 2000; Zhao et al., 

2014a; Zhao et al., 2015). However, whereas canonical proteases evoke PAR2 coupling to 

Gαq and mobilization of intracellular Ca2+, Cat-S- and elastase-activated PAR2 does not 

couple to Gαq, and instead causes Gαs-, adenylyl cyclase- and PKA-mediated activation of 

TRPV4, which permits influx of Ca2+ ions form the extracellular fluid (Zhao et al., 2014a; 

Zhao et al., 2015).  



Trypsin induced a rapid but transient increase in [Ca2+]i that was maximal at 2 min 

and return to baseline after 5 min, consistent with mobilization of Ca2+ ions from intracellular 

stores (Fig. 7 A). Cat-S and elastase caused a gradual and sustained increased [Ca2+]i that 

was maintained for at least 5 min, which is consistent with activation of TRPV4 and influx of 

extracellular Ca2+ ions (Fig. 7, C, F). GB88 markedly inhibited the magnitude of responses to 

trypsin, Cat-S and elastase. Of all the capsaicin- and KCl-responsive neurons, 52 ± 5% 

responded to trypsin, 49 ± 7% responded to Cat-S, and 57 ± 10% responded to elastase. 

GB88 reduced the proportion of responsive neurons by >60% (Fig. 7 G). In contrast, GB88 

neither affected the magnitude of the Ca2+ response to capsaicin nor the proportion of 

capsaicin-responsive neurons, consistent with its inability to inhibit capsaicin-evoked 

inflammation and pain. Our results suggest that GB88 inhibits proteolytic activation of 

nociceptive neurons, which we have shown depends in large part of PAR2 (Zhao et al., 

2014a; Zhao et al., 2015). 

Effects of GB88 on protease activity. To eliminate the possibility that the analgesic effects 

of GB88 were mediated by direct protease inhibition rather than PAR2 antagonism, we 

studied the ability of GB88 to prevent proteolytic activity. Using fluorogenic substrates, we 

monitored the activity of recombinant proteases upon initial interaction with GB88, mimicking 

the conditions that were used in the studies of DRG neurons.  GB88 (1, 10, 100 µM) did not 

affect the activity of trypsin or elastase, but moderately reduced Cat-S activity (<20% 

inhibition; Fig. 8A). We also tested the ability of GB88 to inhibit the binding of proteases to 

covalent activity-based probes (Fig. 8B, C). In this assay, GB88 was incubated with the 

enzyme for 30 min. Trypsin activity was not affected at any concentration of GB88 tested (1, 

10, 100 µM). Cat-S and elastase activities were modestly affected at 10 µM (<25% inhibition) 

and more so at 100 µM GB88 (40% and 74%, respectively). Hence, GB88 can directly inhibit 

proteases activity, but only at high concentrations, which are unlikely to be achieved in vivo. 

Thus, the effects of GB88 on nociceptor activation, inflammation and pain are unlikely to be 

due to direct effects on protease activity, but rather through antagonism of PAR2.  

 



DISCUSSION & CONCLUSIONS 

We report that GB88, a small molecule PAR2 antagonist, inhibits the capacity of 

canonical and biased proteases to activate PAR2 on nociceptors and cause inflammation and 

pain. GB88 inhibited the activation of nociceptors by trypsin, Cat-S and elastase, and 

suppressed the proinflammatory and pronociceptive actions of these proteases. 

GB88 inhibits the proinflammatory and pronociceptive actions of canonical and 

biased agonists of PAR2. Our results show that GB88 inhibits the proinflammatory and 

pronociceptive actions of proteases that are canonical and biased agonists of PAR2. Trypsin, 

a canonical agonist, cleaves at Arg36↓Ser37, and activates PAR2 by a tethered ligand 

mechanism (Bohm et al., 1996; Nystedt et al., 1995; Nystedt et al., 1994). Trypsin-activated 

PAR2 couples to Gαq, which mobilizes intracellular calcium, and recruits β-arrestins, leading 

to receptor endocytosis (Ayoub et al., 2013; DeFea et al., 2000; Dery et al., 1999). Cat-S and 

elastase activate PAR2 by different mechanisms. Cat-S cleaves at Glu56↓Thr5, which reveals 

a unique tethered ligand (Zhao et al., 2014a). Elastase cleaves at Ser67↓Val68, and activates 

PAR2 by a mechanism that does not involve tethered ligand binding (Ramachandran et al., 

2011; Zhao et al., 2015). Cat-S- and elastase-cleaved PAR2 couples to Gαs, but not Gαq or 

β-arrestins, and elastase-cleaved PAR2 also couples to Gα12/13. Thus, Cat-S and elastase 

are biased agonists of PAR2. Despite these divergent mechanisms of PAR2 activation and 

signaling, trypsin, Cat-S and elastase all cause PAR2-dependent inflammation and pain 

(Steinhoff et al., 2000; Vergnolle et al., 2001; Zhao et al., 2014a; Zhao et al., 2015). However, 

whereas trypsin causes PKC- and PKA-dependent sensitization of TRP channels and 

nociceptors, Cat-S and elastase activate TRP channels and nociceptors solely via PKA 

(Amadesi et al., 2006; Zhao et al., 2014a; Zhao et al., 2015). 

We found that trypsin, Cat-S or elastase caused sustained oedema and mechanical 

hyperalgesia in mice. Trypsin and Cat-S, but not elastase, also caused thermal hyperalgesia. 

The reason for the differences in the tendency of proteases to cause thermal hyperalgesia is 

unknown, but may relate to the activation of different signaling processes that differentially 

sensitize thermo-sensitive TRP channels. Although trypsin, Cat-S and elastase induce PAR2-



dependent activation of TRPV4 (Zhao et al., 2014a; Zhao et al., 2015), trypsin can also 

sensitize TRPV1 and TRPA1 (Amadesi et al., 2004; Dai et al., 2004; Dai et al., 2007). 

Further studies are required to ascertain whether Cat-S and elastase can sensitize TRPV1 

and TRPA1.  

GB88 inhibited the proinflammatory and pronociceptive actions of trypsin, Cat-S and 

elastase. These results are consistent with the observation that Par2 deletion inhibits trypsin-, 

Cat-S- and elastase evoked inflammation and pain (Vergnolle et al., 2001; Zhao et al., 

2014a; Zhao et al., 2015). GB88 did not affect capsaicin-evoked and TRPV1-mediated 

inflammation and pain, and had no additional anti-inflammatory of algesic actions in Par2
 

deficient mice, which suggest that PAR2 is the primary target of GB88 in vivo. Minor 

differences in the degree to which GB88 inhibited the proinflammatory and pronociceptive 

effects of proteases may be attributable to different mechanisms of action. Although PAR2 

plays a dominant role in protease-evoked inflammation and pain, elastase also activates 

PAR1
 (Mihara et al., 2013), and Cat-S cleaves and activates MrgprC11 (Reddy et al., 2015).  

GB88 inhibited the proinflammatory and pronociceptive actions of the PAR2 agonists 

2-furoyl-LIGRLO-NH2 and AC264613. 2-furoyl-LIGRLO-NH2 and AC264613 are selective for 

PAR2 over other PARs, and induce oedema and hyperalgesia after intraplantar injection 

(Gardell et al., 2008; Kanke et al., 2005; Suen et al., 2012). In support of these observations, 

we found that GB88 prevented 2-furoyl-LIGRLO-NH2- and AC264613-induced oedema and 

mechanical hyperalgesia in mice. These results are consistent with our observation that 

GB88 also inhibited protease-evoked inflammation and pain, and support the view that GB88 

exerts anti-inflammatory and analgesic actions by antagonism of PAR2. 

GB88 inhibits the activation of nociceptors by canonical and biased agonists of PAR2. 

Our results show that GB88 blocked the capacity of proteases that activate PAR2 by 

canonical and biased mechanisms to activate nociceptors. PAR2 mRNA was readily detected 

in rat DRG neurons by in situ hybridization. PAR2-positive neurons were small diameter, and 

included peptidergic and non-peptidergic neurons with the characteristics of nociceptors. Our 

findings support other reports of prominent expression of PAR2 in nociceptors (Steinhoff et 



al., 2000; Vellani et al., 2010). Consistent with these findings, trypsin, Cat-S and elastase 

induced robust increases in [Ca2+]i in a substantial proportion of small diameter, capsaicin-

sensitive rat DRG neurons. Whereas trypsin stimulated a rapid and transient increase in 

[Ca2+]i, consistent with mobilization of intracellular calcium stores, Cat-S and elastase 

induced a gradual and sustained increase in [Ca2+]i, which suggests activation of a plasma 

membrane channel and influx of extracellular Ca2+ ions. Regardless of the mechanism, GB88 

inhibited the magnitude of protease-evoked calcium signals and the proportion of neurons 

with detectable responses. Thus, PAR2 is a prominent mediator of protease signaling to 

nociceptive neurons. Residual responses in GB88-treated neurons may be attributed to 

activation of other receptors or channels. Elastase can also activate PAR1, and Cat-S 

activates MrgprC11, which are expressed in nociceptors (Mihara et al., 2013; Reddy et al., 

2015; Vellani et al., 2010). 

 PAR2 mRNA was less prominent in DRG and trigeminal neurons of mice. Although 

trypsin, Cat-S and elastase cause PAR2-mediated activation of mouse nociceptors, assessed 

by measurement of excitability and calcium signals (Amadesi et al., 2006; Zhao et al., 2014a; 

Zhao et al., 2015), there are fewer responsive neurons in mouse than rat. Whereas trypsin 

evokes a rapid increase in [Ca2+]i in mouse nociceptors, Cat-S and elastase induce a gradual 

and sustained increase in [Ca2+]i. These differences are attributable to the divergent 

mechanisms  by which these proteases activate PAR2. Trypsin-activated PAR2 couples to 

Gαs and mobilization of intracellular calcium, but Cat-S- and elastase-activated PAR2 is 

unable to couple to Gαq and does not mobilize intracellular calcium (Zhao et al., 2014a; 

Zhao et al., 2015). Instead, Cat-S- and elastase-activated PAR2 couples to Gαs, adenylyl 

cyclase and cAMP, and induces a PKA-dependent activation of TRPV4 and influx of 

extracellular calcium ions. Trypsin-activated PAR2 stimulates TRPV4 by PKC- and tyrosine-

kinase mechanisms. 

GB88 mechanism and selectivity. GB88 inhibited the ability of canonical and biased 

agonists of PAR2 to activate nociceptors and cause inflammation and pain. GB88 inhibits 

PAR2 activation in cell lines by trypsin, Cat-S and 2-furoyl-LIGRLO-NH2, and is a competitive 



and surmountable antagonist of 2-furoyl-LIGRLO-NH2 (Suen et al., 2012; Zhao et al., 2014a). 

Trypsin, Cat-S and elastase cleave PAR2 at different sites. Trypsin and Cat-S cleavage 

revealed distinct tethered ligands, whereas elastase activates PAR2 by a non-tethered ligand 

mechanism. Thus, GB88 binding most probably antagonises PAR2 by stabilizing inactive 

conformations rather than by inhibiting cleavage or binding of a specific tethered ligand. 

GB88 is a pathway-selective antagonist of PAR2, showing preference for antagonism of Gαq 

signaling and agonism of Gαi/o signaling (Suen et al., 2014), which may account for its ability 

to antagonise the actions of Cat-S and elastase. Further studies are required to define the 

mechanisms by which GB88 inhibits Cat-S and elastase activation of PAR2. 

TRP channels are downstream targets of PAR2. PAR2 can sensitize TRPV1, and 

TRPV1 deletion or antagonism inhibits PAR2-dependent hyperalgesia (Amadesi et al., 2004, 

Dai 2004). We found that GB88 did not affect capsaicin-evoked calcium signals in 

nociceptors, consistent with its inability to inhibit the proinflammatory and algesic actions of 

capsaicin. These findings support the conclusion that GB88 prevents protease-activation of 

nociceptors, inflammation and pain by antagonism of PAR2 rather than TRPV1. 

To confirm that the effects of GB88 were not due to protease inhibition, we examined 

whether GB88 inhibits protease activity. By using a fluorogenic assay to mimic conditions of 

protease signaling to nociceptors in culture, we found that GB88 (10 µM) did not affect 

trypsin or elastase activity, and had a modest effect on Cat-S activity. When pre-incubated 

with activity-based probes, GB88 did not affect trypsin binding, and inhibited Cat-S and 

elastase binding only at high concentrations (>10 µM) that are likely to exceed those attained 

in vivo. Thus, the effects of GB88 on inflammation and pain are more likely due to 

antagonism of PAR2 rather than inhibition of protease activity. 

Multiple proteases become activated during injury and inflammation, when the 

balance of protease activation and levels of endogenous inhibitors is crucially important for 

inflammatory and neuropathic pain. Cat-S is activated in macrophages and spinal microglial 

cells during colitis and in neuropathic pain states (Cattaruzza et al., 2011; Clark et al., 2007), 

and mast cell tryptase is elevated in patients with visceral pain (Barbara et al., 2004). 



Elastase released from leukocytes within sensory ganglia can contribute to neuropathic pain, 

which is exacerbated by deficiency in the elastase inhibitor serpinA3N (Vicuna et al., 2015). 

Thus, our finding that GB88 inhibits the pronociceptive actions of diverse proteases suggests 

its potential to suppress different forms of inflammatory and neuropathic pain that are 

associated with the differential activation of proteases. Our findings expand the usefulness of 

GB88 and related compounds to inhibit inflammatory and painful conditions (Barry et al., 

2010; Lohman et al., 2012a; Lohman et al., 2012b; Suen et al., 2012; Zhao et al., 2014a).  
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FIGURE LEGENDS 

Figure 1. Effects of GB88 on protease-evoked inflammation and pain. Mice were treated 

with GB88 (10 mg/kg p.o.) or vehicle 2 h before intraplantar injections of trypsin (A-C, 30 ng), 

Cat-S (D-F, 14 µg), elastase (G-I, 290 ng) or vehicle. Paw thickness (A, D, G), paw 

withdrawal to mechanical stimulation (B, E, H), and paw withdrawal to thermal stimulation (C, 

F, I) were measured. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 compared to 

vehicle/vehicle control. 

Figure 2. Effects of GB88 on basal inflammation and pain. Mice were treated with GB88 

(10 mg/kg p.o.) or vehicle 2 h before intraplantar injection of vehicle. Paw thickness (A) and 

paw withdrawal to mechanical stimulation (B) were measured hourly for 4 h. 

Figure 3. Effects of GB88 on PAR2 agonist-evoked inflammation and pain. Mice were 

treated with GB88 (10 mg/kg p.o.) or vehicle 2 h before intraplantar injections of 2-furoyl-

LIGRLO-NH2 (2F) (A, B, 500 ng) or AC264613 (C, D, 1 µg). Paw thickness (A, C) and paw 

withdrawal to mechanical stimulation (B, D) were measured hourly for 4 h. *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001 compared to vehicle/vehicle control. 

Figure 4. Effects of GB88 on capsaicin-evoked inflammation and pain. Mice were 

treated with GB88 (10 mg/kg p.o.) or vehicle 2 h before intraplantar injection of capsaicin 

(Cap, 5 µg). Paw thickness (A) and paw withdrawal to mechanical stimulation (B) were 

measured hourly for 4 h. **P<0.01, ***P<0.001, ****P<0.0001 compared to vehicle/Cat-S 

control. 

Figure 5. Effects of GB88 on inflammation and pain in PAR2 deficient mice. Par2
+/+ (wild-

type, WT) or Par2
-/- (knockout, KO) mice were treated with GB88 (10 mg/kg p.o.) or vehicle 2 

h before intraplantar injection of Cat-S (14 µg). Paw thickness (A) and paw withdrawal to 

mechanical stimulation (B) were measured hourly for 4 h. ****P<0.0001 compared to 

vehicle/vehicle control. 

Figure 6. Localization of PAR2 mRNA in DRG. In situ hybridisation on sections of mouse 

trigeminal (A) ganglia or rat DRG (B). C-G. The inset shows an inverted image of PAR2 in 

situ hybridization (ISH, C), immunoreactive CGRP (D), immunoreactive neurofilament 200 



(NF200, E), IB4 (F), and a merged image (G). Arrow heads show expression of PAR2 in 

small diameter neurons that expressed CGRP or bound IB4. Scale, 20 µm. 

Figure 7. Effects of GB88 on protease-evoked Ca2+ signaling in DRG neurons. Rat DRG 

neurons were challenged with trypsin (A, B, 10 nM), elastase (C, D, 100 nM) or Cat-S (E, F, 100 

nM) in the presence of GB88 (10 µM) or vehicle (control). A, C, E. Representative traces of 

kinetics of Ca2+ responses. B, D, F. Area under the curve (AUC) from 50-250 s. G. Effects of 

GB88 on the proportion of protease-responsive neurons that also responded to capsaicin. 

*P<0.05, ***P<0.001. n=4-6 rats, with >100 neurons analysed from each rat. 

Figure 8. Effects of GB88 on protease activity. A. Effects of GB88 on protease cleavage 

of fluorogenic substrates. GB88 (10 µM) was mixed with substrates (50 µM). Proteases were 

added (final concentrations: trypsin, 10 nM; Cat-S, 100 nM; elastase, 100 nM) and 

fluorescence was monitored. The slope of the reaction was measured during the initial 60-

120 s (in the linear range). B, C. Effects of GB88 on protease labelling by fluorescent activity-

based probes. Recombinant proteases were pre-treated with GB88 (1, 10, 100 µM) in 1% 

DMSO. Residual activity was determined by labelling with activity-based probes and analysis 

by fluorescent SDS-PAGE. B shows a representative gel. C shows quantified signals. 

**P<0.01, n=5 or 6 separate experiments. 

  



 

Figure 1 

  



 

Figure 2 

  



 

Figure 3 

  



 

Figure 4 

  



 

Figure 5 

  



 

Figure 6 

  



 

Figure 7 



 

Figure 8 

 

 

 

 


