4,275 research outputs found

    Control of coherent backscattering by breaking optical reciprocity

    Full text link
    Reciprocity is a universal principle that has a profound impact on many areas of physics. A fundamental phenomenon in condensed-matter physics, optical physics and acoustics, arising from reciprocity, is the constructive interference of quantum or classical waves which propagate along time-reversed paths in disordered media, leading to, for example, weak localization and metal-insulator transition. Previous studies have shown that such coherent effects are suppressed when reciprocity is broken. Here we show that by breaking reciprocity in a controlled manner, we can tune, rather than simply suppress, these phenomena. In particular, we manipulate coherent backscattering of light, also known as weak localization. By utilizing a non-reciprocal magneto-optical effect, we control the interference between time-reversed paths inside a multimode fiber with strong mode mixing, and realize a continuous transition from the well-known peak to a dip in the backscattered intensity. Our results may open new possibilities for coherent control of classical and quantum waves in complex systemsComment: Comments are welcom

    Critical States Embedded in the Continuum

    Get PDF
    We introduce a class of critical states which are embedded in the continuum (CSC) of one-dimensional optical waveguide array with one non-Hermitian defect. These states are at the verge of being fractal and have real propagation constant. They emerge at a phase transition which is driven by the imaginary refractive index of the defect waveguide and it is accompanied by a mode segregation which reveals analogies with the Dicke super -radiance. Below this point the states are extended while above they evolve to exponentially localized modes. An addition of a background gain or loss can turn these localized states to bound states in the continuum.Comment: 4.5 pages, 3 figures, 1 page of supplementary material including one figur

    Quantum walks of correlated particles

    Get PDF
    Quantum walks of correlated particles offer the possibility to study large-scale quantum interference, simulate biological, chemical and physical systems, and a route to universal quantum computation. Here we demonstrate quantum walks of two identical photons in an array of 21 continuously evanescently-coupled waveguides in a SiOxNy chip. We observe quantum correlations, violating a classical limit by 76 standard deviations, and find that they depend critically on the input state of the quantum walk. These results open the way to a powerful approach to quantum walks using correlated particles to encode information in an exponentially larger state space

    Failed Gamma-Ray Bursts: Thermal UV/Soft X-ray Emission Accompanied by Peculiar Afterglows

    Full text link
    We show that the photospheres of "failed" Gamma-Ray Bursts (GRBs), whose bulk Lorentz factors are much lower than 100, can be outside of internal shocks. The resulting radiation from the photospheres is thermal and bright in UV/Soft X-ray band. The photospheric emission lasts for about one thousand seconds with luminosity about several times 10^46 erg/s. These events can be observed by current and future satellites. It is also shown that the afterglows of failed GRBs are peculiar at the early stage, which makes it possible to distinguish failed GRBs from ordinary GRBs and beaming-induced orphan afterglows.Comment: 19 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Discrete charging of metallic grains: Statistics of addition spectra

    Full text link
    We analyze the statistics of electrostatic energies (and their differences) for a quantum dot system composed of a finite number KK of electron islands (metallic grains) with random capacitance-inductance matrix CC, for which the total charge is discrete, Q=NeQ=Ne (where ee is the charge of an electron and NN is an integer). The analysis is based on a generalized charging model, where the electrons are distributed among the grains such that the electrostatic energy E(N) is minimal. Its second difference (inverse compressibility) χN=E(N+1)−2E(N)+E(N−1)\chi_{N}=E(N+1)-2 E(N)+E(N-1) represents the spacing between adjacent Coulomb blockade peaks appearing when the conductance of the quantum dot is plotted against gate voltage. The statistics of this quantity has been the focus of experimental and theoretical investigations during the last two decades. We provide an algorithm for calculating the distribution function corresponding to χN\chi_{N} and show that this function is piecewise polynomial.Comment: 21 pages, no figures, mathematical nomenclature (except for Abstract and Introduction

    A nonlinear theory of non-stationary low Mach number channel flows of freely cooling nearly elastic granular gases

    Full text link
    We use hydrodynamics to investigate non-stationary channel flows of freely cooling dilute granular gases. We focus on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type in Lagrangian coordinates. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation is exactly soluble, and the solution develops a finite-time density blowup. The heat diffusion, however, becomes important near the attempted singularity. It arrests the density blowup and brings about novel inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. Both the density profile of an ICS, and the characteristic relaxation time towards it are determined by a single dimensionless parameter that describes the relative role of the inelastic energy loss and heat diffusion. At large values of this parameter, the intermediate cooling dynamics proceeds as a competition between low-density regions of the gas. This competition resembles Ostwald ripening: only one hole survives at the end.Comment: 20 pages, 15 figures, final versio

    Leading particle effect, inelasticity and the connection between average multiplicities in {\bf e+e−e^+e^-} and {\bf pppp} processes

    Full text link
    The Regge-Mueller formalism is used to describe the inclusive spectrum of the proton in ppp p collisions. From such a description the energy dependences of both average inelasticity and leading proton multiplicity are calculated. These quantities are then used to establish the connection between the average charged particle multiplicities measured in {\bf e+e−e^+e^-} and {\bf pp/pˉppp/{\bar p}p} processes. The description obtained for the leading proton cross section implies that Feynman scaling is strongly violated only at the extreme values of xFx_F, that is at the central region (xF≈0x_F \approx 0) and at the diffraction region (xF≈1x_F \approx 1), while it is approximately observed in the intermediate region of the spectrum.Comment: 20 pages, 10 figures, to be published in Physical Review

    On the experimental verification of quantum complexity in linear optics

    Full text link
    The first quantum technologies to solve computational problems that are beyond the capabilities of classical computers are likely to be devices that exploit characteristics inherent to a particular physical system, to tackle a bespoke problem suited to those characteristics. Evidence implies that the detection of ensembles of photons, which have propagated through a linear optical circuit, is equivalent to sampling from a probability distribution that is intractable to classical simulation. However, it is probable that the complexity of this type of sampling problem means that its solution is classically unverifiable within a feasible number of trials, and the task of establishing correct operation becomes one of gathering sufficiently convincing circumstantial evidence. Here, we develop scalable methods to experimentally establish correct operation for this class of sampling algorithm, which we implement with two different types of optical circuits for 3, 4, and 5 photons, on Hilbert spaces of up to 50,000 dimensions. With only a small number of trials, we establish a confidence >99% that we are not sampling from a uniform distribution or a classical distribution, and we demonstrate a unitary specific witness that functions robustly for small amounts of data. Like the algorithmic operations they endorse, our methods exploit the characteristics native to the quantum system in question. Here we observe and make an application of a "bosonic clouding" phenomenon, interesting in its own right, where photons are found in local groups of modes superposed across two locations. Our broad approach is likely to be practical for all architectures for quantum technologies where formal verification methods for quantum algorithms are either intractable or unknown.Comment: Comments welcom
    • …
    corecore