1,486 research outputs found
The use of biomechanics in the study of movement in microgravity
As biomechanists interested in the adaptability of the human body to microgravity conditions, it appears that our job is not only to make sure that the astronauts can function adequately in space but also that they can function upon their return to Earth. This is especially significant since many of the projects now being designed at NASA concern themselves with humans performing for up to 3 years in microgravity. While the Extended Duration Orbiter flights may last 30 to 60 days, future flights to Mars using current propulsion technology may last from 2 to 3 years. It is for this range of time that the adaptation process must be studied. Specifically, biomechanists interested in space travel realize that human performance capabilities will change as a result of exposure to microgravity. The role of the biomechanist then is to first understand the nature of the changes realized by the body. These changes include adaptation by the musculoskeletal system, the nervous system, cardiorespiratory system, and the cardiovascular system. As biomechanists, it is also our role to take part in the development of countermeasure programs that involve some form of regular exercise. Exercise countermeasure programs should include a variety of modalities with full knowledge of the loads imposed on the body by these modalities. Any exercise programs that are to be conducted by the astronauts during space travel must consider the fact that the musculoskeletal and neuromuscular systems degrade as a function of flight duration. Additionally, it must be understood that the central nervous system modifies its output in the control of the human body during space flight and most importantly, we must prepare the astronauts for their return to one g
Boundary effects in a random neighbor model of earthquakes
We introduce spatial inhomogeneities (boundaries) in a random neighbor
version of the Olami, Feder and Christensen model [Phys. Rev. Lett. 68, 1244
(1992)] and study the distributions of avalanches starting both from the bulk
and from the boundaries of the system. Because of their clear geophysical
interpretation, two different boundary conditions have been considered (named
free and open, respectively). In both cases the bulk distribution is described
by the exponent . Boundary distributions are instead
characterized by two different exponents and , for free and open boundary conditions, respectively. These
exponents indicate that the mean-field behavior of this model is correctly
described by a recently proposed inhomogeneous form of critical branching
process.Comment: 6 pages, 2 figures ; to appear on PR
Dissipative Abelian Sandpiles and Random Walks
We show that the dissipative Abelian sandpile on a graph L can be related to
a random walk on a graph which consists of L extended with a trapping site.
From this relation it can be shown, using exact results and a scaling
assumption, that the dissipative sandpiles' correlation length exponent \nu
always equals 1/d_w, where d_w is the fractal dimension of the random walker.
This leads to a new understanding of the known results that \nu=1/2 on any
Euclidean lattice. Our result is however more general and as an example we also
present exact data for finite Sierpinski gaskets which fully confirm our
predictions.Comment: 10 pages, 1 figur
Association of treatment satisfaction and psychopathological sub-syndromes among involuntary patients with psychotic disorders
Publisher's version: http://www.springerlink.com/content/rx24036274667t10
How self-organized criticality works: A unified mean-field picture
We present a unified mean-field theory, based on the single site
approximation to the master-equation, for stochastic self-organized critical
models. In particular, we analyze in detail the properties of sandpile and
forest-fire (FF) models. In analogy with other non-equilibrium critical
phenomena, we identify the order parameter with the density of ``active'' sites
and the control parameters with the driving rates. Depending on the values of
the control parameters, the system is shown to reach a subcritical (absorbing)
or super-critical (active) stationary state. Criticality is analyzed in terms
of the singularities of the zero-field susceptibility. In the limit of
vanishing control parameters, the stationary state displays scaling
characteristic of self-organized criticality (SOC). We show that this limit
corresponds to the breakdown of space-time locality in the dynamical rules of
the models. We define a complete set of critical exponents, describing the
scaling of order parameter, response functions, susceptibility and correlation
length in the subcritical and supercritical states. In the subcritical state,
the response of the system to small perturbations takes place in avalanches. We
analyze their scaling behavior in relation with branching processes. In
sandpile models because of conservation laws, a critical exponents subset
displays mean-field values ( and ) in any dimensions. We
treat bulk and boundary dissipation and introduce a new critical exponent
relating dissipation and finite size effects. We present numerical simulations
that confirm our results. In the case of the forest-fire model, our approach
can distinguish between different regimes (SOC-FF and deterministic FF) studied
in the literature and determine the full spectrum of critical exponents.Comment: 21 RevTex pages, 3 figures, submitted to Phys. Rev.
Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Measurements of transverse energy flow are presented for neutral current
deep-inelastic scattering events produced in positron-proton collisions at
HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to
2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the
hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in
the hadronic centre of mass frame and is studied as a function of Q^2, x, W and
pseudorapidity. A comparison is made with QCD based models. The behaviour of
the mean transverse energy in the central pseudorapidity region and an interval
corresponding to the photon fragmentation region are analysed as a function of
Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.
Searches at HERA for Squarks in R-Parity Violating Supersymmetry
A search for squarks in R-parity violating supersymmetry is performed in e^+p
collisions at HERA at a centre of mass energy of 300 GeV, using H1 data
corresponding to an integrated luminosity of 37 pb^(-1). The direct production
of single squarks of any generation in positron-quark fusion via a Yukawa
coupling lambda' is considered, taking into account R-parity violating and
conserving decays of the squarks. No significant deviation from the Standard
Model expectation is found. The results are interpreted in terms of constraints
within the Minimal Supersymmetric Standard Model (MSSM), the constrained MSSM
and the minimal Supergravity model, and their sensitivity to the model
parameters is studied in detail. For a Yukawa coupling of electromagnetic
strength, squark masses below 260 GeV are excluded at 95% confidence level in a
large part of the parameter space. For a 100 times smaller coupling strength
masses up to 182 GeV are excluded.Comment: 32 pages, 14 figures, 3 table
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider
Measurements of multi-particle azimuthal correlations (cumulants) for charged
particles in p-Pb and Pb-Pb collisions are presented. They help address the
question of whether there is evidence for global, flow-like, azimuthal
correlations in the p-Pb system. Comparisons are made to measurements from the
larger Pb-Pb system, where such evidence is established. In particular, the
second harmonic two-particle cumulants are found to decrease with multiplicity,
characteristic of a dominance of few-particle correlations in p-Pb collisions.
However, when a gap is placed to suppress such correlations,
the two-particle cumulants begin to rise at high-multiplicity, indicating the
presence of global azimuthal correlations. The Pb-Pb values are higher than the
p-Pb values at similar multiplicities. In both systems, the second harmonic
four-particle cumulants exhibit a transition from positive to negative values
when the multiplicity increases. The negative values allow for a measurement of
to be made, which is found to be higher in Pb-Pb collisions at
similar multiplicities. The second harmonic six-particle cumulants are also
found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find
which is indicative of a Bessel-Gaussian
function for the distribution. For very high-multiplicity Pb-Pb
collisions, we observe that the four- and six-particle cumulants become
consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and
Pb-Pb are measured. These are found to be similar for overlapping
multiplicities, when a gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87
- …