We present a unified mean-field theory, based on the single site
approximation to the master-equation, for stochastic self-organized critical
models. In particular, we analyze in detail the properties of sandpile and
forest-fire (FF) models. In analogy with other non-equilibrium critical
phenomena, we identify the order parameter with the density of ``active'' sites
and the control parameters with the driving rates. Depending on the values of
the control parameters, the system is shown to reach a subcritical (absorbing)
or super-critical (active) stationary state. Criticality is analyzed in terms
of the singularities of the zero-field susceptibility. In the limit of
vanishing control parameters, the stationary state displays scaling
characteristic of self-organized criticality (SOC). We show that this limit
corresponds to the breakdown of space-time locality in the dynamical rules of
the models. We define a complete set of critical exponents, describing the
scaling of order parameter, response functions, susceptibility and correlation
length in the subcritical and supercritical states. In the subcritical state,
the response of the system to small perturbations takes place in avalanches. We
analyze their scaling behavior in relation with branching processes. In
sandpile models because of conservation laws, a critical exponents subset
displays mean-field values (ν=1/2 and γ=1) in any dimensions. We
treat bulk and boundary dissipation and introduce a new critical exponent
relating dissipation and finite size effects. We present numerical simulations
that confirm our results. In the case of the forest-fire model, our approach
can distinguish between different regimes (SOC-FF and deterministic FF) studied
in the literature and determine the full spectrum of critical exponents.Comment: 21 RevTex pages, 3 figures, submitted to Phys. Rev.