28 research outputs found

    CRABS CLAW Acts as a Bifunctional Transcription Factor in Flower Development

    Get PDF
    One of the crucial steps in the life cycle of angiosperms is the development of carpels. They are the most complex plant organs, harbor the seeds, and, after fertilization, develop into fruits and are thus an important ecological and economic trait. CRABS CLAW (CRC), a YABBY protein and putative transcription factor, is one of the major carpel developmental regulators in A. thaliana that includes a C2C2 zinc finger and a domain with similarities to an HMG box. CRC is involved in the regulation of processes such as carpel fusion and growth, floral meristem termination, and nectary formation. While its genetic interactions with other carpel development regulators are well described, its biochemical properties and molecular way of action remain unclear. We combined Bimolecular Fluorescence Complementation, Yeast Two-Hybrid, and Yeast One-Hybrid analyzes to shed light on the molecular biology of CRC. Our results showed that CRC dimerizes, also with other YABBY proteins, via the YABBY domain, and that its DNA binding is mainly cooperative and is mediated by the YABBY domain. Further, we identified that CRC is involved in floral meristem termination via transcriptional repression while it acts as a transcriptional activator in nectary development and carpel fusion and growth control. This work increases our understanding on how YABBY transcription factors interact with other proteins and how they regulate their targets

    Identification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida

    Get PDF
    Genetic modification of the flavonoid pathway has been used to produce novel colours and colour patterns in ornamental plants as well as to modify the nutritional and pharmaceutical properties of food crops. It has been suggested that co-ordinate control of multiple steps of the pathway with the help of regulatory genes would lead to a more predictable control of metabolic flux. Regulation of anthocyanin biosynthesis has been studied in a common ornamental plant, Gerbera hybrida (Asteraceae). An R2R3-type MYB factor, GMYB10, shares high sequence similarity and is phylogenetically grouped together with previously characterized regulators of anthocyanin pigmentation. Ectopic expression of GMYB10 leads to strongly enhanced accumulation of anthocyanin pigments as well as to an altered pigmentation pattern in transgenic gerbera plants. Anthocyanin analysis indicates that GMYB10 specifically induces cyanidin biosynthesis in undifferentiated callus and in vegetative tissues. Furthermore, in floral tissues enhanced pelargonidin production is detected. Microarray analysis using the gerbera 9K cDNA array revealed a highly predicted set of putative target genes for GMYB10 including new gene family members of both early and late biosynthetic genes of the flavonoid pathway. However, completely new candidate targets, such as a serine carboxypeptidase-like gene as well, as two new MYB domain factors, GMYB11 and GMYB12, whose exact function in phenylpropanoid biosynthesis is not clear yet, were also identified

    Phyllotactic patterning of gerbera flower heads

    Get PDF
    Phyllotaxis, the distribution of organs such as leaves and flowers on their support, is a key attribute of plant architecture. The geometric regularity of phyllotaxis has attracted multidisciplinary interest for centuries, resulting in an understanding of the patterns in the model plants Arabidopsis and tomato down to the molecular level. Nevertheless, the iconic example of phyllotaxis, the arrangement of individual florets into spirals in the heads of the daisy family of plants (Asteraceae), has not been fully explained. We integrate experimental data and computational models to explain phyllotaxis in Gerbera hybrida. We show that phyllotactic patterning in gerbera is governed by changes in the size of the morphogenetically active zone coordinated with the growth of the head. The dynamics of these changes divides the patterning process into three phases: the development of an approximately circular pattern with a Fibonacci number of primordia near the head rim, its gradual transition to a zigzag pattern, and the development of a spiral pattern that fills the head on the template of this zigzag pattern. Fibonacci spiral numbers arise due to the intercalary insertion and lateral displacement of incipient primordia in the first phase. Our results demonstrate the essential role of the growth and active zone dynamics in the patterning of flower heads.Peer reviewe

    TCP and MADS-Box Transcription Factor Networks Regulate Heteromorphic Flower Type Identity in Gerbera hybrida

    Get PDF
    The large sunflower family, Asteraceae, is characterized by compressed, flower-like inflorescences that may bear phenotypically distinct flower types. The CYCLOIDEA (CYC)/TEOSINTE BRANCHED1-like transcription factors (TFs) belonging to the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) protein family are known to regulate bilateral symmetry in single flowers. In Asteraceae, they function at the inflorescence level, and were recruited to define differential flower type identities. Here, we identified upstream regulators of GhCYC3, a gene that specifies ray flower identity at the flower head margin in the model plant Gerbera hybrida. We discovered a previously unidentified expression domain and functional role for the paralogous CINCINNATA-like TCP proteins. They function upstream of GhCYC3 and affect the developmental delay of marginal ray primordia during their early ontogeny. At the level of single flowers, the Asteraceae CYC genes show a unique function in regulating the elongation of showy ventral ligules that play a major role in pollinator attraction. We discovered that during ligule development, the E class MADS-box TF GRCD5 activates GhCYC3 expression. We propose that the C class MADS-box TF GAGA1 contributes to stamen development upstream of GhCYC3. Our data demonstrate how interactions among and between the conserved floral regulators, TCP and MADS-box TFs, contribute to the evolution of the elaborate inflorescence architecture of Asteraceae.Peer reviewe

    Functional characterization of B class MADS-box transcription factors in Gerbera hybrida

    Get PDF
    According to the classical ABC model, B-function genes are involved in determining petal and stamen development. Most core eudicot species have B class genes belonging to three different lineages: the PI, euAP3, and TM6 lineages, although both Arabidopsis and Antirrhinum appear to have lost their TM6-like gene. Functional studies were performed for three gerbera (Gerbera hybrida) B class MADS-box genes—PI/GLO-like GGLO1, euAP3 class GDEF2, and TM6-like GDEF1—and data are shown for a second euAP3-like gene, GDEF3. In phylogenetic analysis, GDEF3 is a closely related paralogue of GDEF2, and apparently stems from a duplication common to all Asteraceae. Expression analysis and transgenic phenotypes confirm that GGLO1 and GDEF2 mediate the classical B-function since they determine petal and stamen identities. However, based on assays in yeast, three B class heterodimer combinations are possible in gerbera. In addition to the interaction of GGLO1 and GDEF2 proteins, GGLO1 also pairs with GDEF1 and GDEF3. This analysis of GDEF1 represents the first functional characterization of a TM6-like gene in a core eudicot species outside Solanaceae. Similarly to its relatives in petunia and tomato, the expression pattern and transgenic phenotypes indicate that GDEF1 is not involved in determination of petal identity, but has a redundant role in regulating stamen development

    Evolutionary Co-option of Floral Meristem Identity Genes for Patterning of the Flower-like Asteraceae Inflorescence

    Get PDF
    The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems.Peer reviewe

    Alternate wiring of a KNOXI genetic network underlies differences in leaf development of A. thaliana and C. hirsuta

    Get PDF
    Two interrelated problems in biology are understanding the regulatory logic and predictability of morphological evolution. Here, we studied these problems by comparing Arabidopsis thaliana, which has simple leaves, and its relative, Cardamine hirsuta, which has dissected leaves comprising leaflets. By transferring genes between the two species, we provide evidence for an inverse relationship between the pleiotropy of SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP) homeobox genes and their ability to modify leaf form. We further show that cis-regulatory divergence of BP results in two alternative configurations of the genetic networks controlling leaf development. In C. hirsuta, ChBP is repressed by the microRNA164A (MIR164A)/ChCUP-SHAPED COTYLEDON (ChCUC) module and ChASYMMETRIC LEAVES1 (ChAS1), thus creating cross-talk between MIR164A/CUC and AS1 that does not occur in A. thaliana. These different genetic architectures lead to divergent interactions of network components and growth regulation in each species. We suggest that certain regulatory genes with low pleiotropy are predisposed to readily integrate into or disengage from conserved genetic networks influencing organ geometry, thus rapidly altering their properties and contributing to morphological divergence
    corecore