196 research outputs found
The Cr neutrino source and Borexino: a desirable marriage
Exposure to a Cr neutrino source as that used in Gallex will provide
an excellent overall performance test of Borexino, which should collect about
1400 source induced events, with an initial rate of about 35 counts per day.
This will be particularly important if MSW-small-angle turns out to be the
solution of the solar neutrino problem. In addition, if an independent,
accurate calibration is available, one will have an interesting experiment on
neutrino properties: as an example, a neutrino magnetic moment of the order
could be detected/excluded at the 90\% C.L.Comment: 7 pages, RevTeX, plus 3 postscripts figures, tarred, compresse
A new study of Mg(,n)Si angular distributions at = 3 - 5 MeV
The observation of Al gives us the proof of active nucleosynthesis in
the Milky Way. However the identification of the main producers of Al is
still a matter of debate. Many sites have been proposed, but our poor knowledge
of the nuclear processes involved introduces high uncertainties. In particular,
the limited accuracy on the Mg(,n)Si reaction cross
section has been identified as the main source of nuclear uncertainty in the
production of Al in C/Ne explosive burning in massive stars, which has
been suggested to be the main source of Al in the Galaxy. We studied
this reaction through neutron spectroscopy at the CN Van de Graaff accelerator
of the Legnaro National Laboratories. Thanks to this technique we are able to
discriminate the (,n) events from possible contamination arising from
parasitic reactions. In particular, we measured the neutron angular
distributions at 5 different beam energies (between 3 and 5 MeV) in the
\ang{17.5}-\ang{106} laboratory system angular range. The presented results
disagree with the assumptions introduced in the analysis of a previous
experiment.Comment: 9 pages, 9 figures - accepted by EPJ
Sensitivities of Low Energy Reactor Neutrino Experiments
The low energy part of the reactor neutrino spectra has not been
experimentally measured. Its uncertainties limit the sensitivities in certain
reactor neutrino experiments. The origin of these uncertainties are discussed,
and the effects on measurements of neutrino interactions with electrons and
nuclei are studied. Comparisons are made with existing results. In particular,
the discrepancies between previous measurements with Standard Model
expectations can be explained by an under-estimation of the low energy reactor
neutrino spectra. To optimize the experimental sensitivities, measurements for
\nuebar-e cross-sections should focus on events with large (1.5 MeV)
recoil energy while those for neutrino magnetic moment searches should be based
on events 100 keV. The merits and attainable accuracies for
neutrino-electron scattering experiments using artificial neutrino sources are
discussed.Comment: 25 pages, 9 figure
The Cross Section of 3He(3He,2p)4He measured at Solar Energies
We report on the results of the \hethet\ experiment at the underground
accelerator facility LUNA (Gran Sasso). For the first time the lowest
projectile energies utilized for the cross section measurement correspond to
energies below the center of the solar Gamow peak (=22 keV). The
data provide no evidence for the existence of a hypothetical resonance in the
energy range investigated. Although no extrapolation is needed anymore (except
for energies at the low-energy tail of the Gamow peak), the data must be
corrected for the effects of electron screening, clearly observed the first
time for the \hethet\ reaction. The effects are however larger than expected
and not understood, leading presently to the largest uncertainty on the quoted
value for bare nuclides (=5.40 MeV b).Comment: 18 pages, 10 postscript figures, Calculations concerning hypothetical
resonanz added, Submitted to Phys. Rev. C., available at this URL:
HTTP://www.lngs.infn.it/lngs/htexts/luna/luna.htm
Effects of neutrino oscillations and neutrino magnetic moments on elastic neutrino-electron scattering
We consider elastic antineutrino-electron scattering taking into account
possible effects of neutrino masses and mixing and of neutrino magnetic moments
and electric dipole moments. Having in mind antineutrinos produced in a nuclear
reactor we compute, in particular, the weak-electromagnetic interference terms
which are linear in the magnetic (electric dipole) moments and also in the
neutrino masses. We show that these terms are, however, suppressed compared to
the pure weak and electromagnetic cross section. We also comment upon the
possibility of using the electromagnetic cross section to investigate neutrino
oscillations.Comment: 12 pages, REVTEX file, no figures, submitted to Phys.Rev.
Real Oscillations of Virtual Neutrinos
We study the conditions for neutrino oscillations in a field theoretical
approach by taking into account that only the neutrino production and detection
processes, which are localized in space around the coordinates and
, respectively, can be manipulated. In this sense the neutrinos
whose oscillations are investigated appear as virtual lines connecting
production with detection in the total Feynman graph and all neutrino fields or
states to be found in the discussion are mass eigenfields or eigenstates. We
perform a thorough examination of the integral over the spatial components of
the inner neutrino momentum and show that in the asymptotic limit the virtual neutrinos become ``real'' and
under certain conditions the usual picture of neutrino oscillations emerges
without ambiguities.Comment: 12 pages, pure LaTeX file, no figure
Bounds on the tau and muon neutrino vector and axial vector charge radius
A Majorana neutrino is characterized by just one flavor diagonal
electromagnetic form factor: the anapole moment, that in the static limit
corresponds to the axial vector charge radius . Experimental information
on this quantity is scarce, especially in the case of the tau neutrino. We
present a comprehensive analysis of the available data on the single photon
production process off Z-resonance, and we
discuss the constraints that these measurements can set on for the tau
neutrino. We also derive limits for the Dirac case, when the presence of a
vector charge radius is allowed. Finally, we comment on additional
experimental data on scattering from the NuTeV, E734, CCFR and
CHARM-II collaborations, and estimate the limits implied for and
for the muon neutrino.Comment: 20 pages, 2 eps figures. CCFR data included in the analysis.
Conclusion unchange
On the possiblity of detecting Solar pp-neutrino with a large volume liquid organic scintillator detector
It is shown that a large volume liquid organic scintillator detector with an
energy resolution of 10 keV at 200 keV 1 sigma will be sensitive to solar
pp-neutrino, if operated at the target radiopurity levels for the Borexino
detector, or the solar neutrino project of KamLAND.Comment: 18 pages, 2 figures, 4 tables. Contributed paper to the
Nonaccelerating New Neutrino Physic. NANP-2003, Dubna. To be published in
Phys.At.Nucl.(2004
Measurement of the 25Mg(α,n)28Si reaction cross section at LNL
The detection of the 1809 keV emission line associated with the decay of 26Al (T1=2 ∼ 7:2 · 105 years) in the interstellar medium provides a direct evidence that nucleosynthesis is ongoing in our galaxy. 26Al is thought to be mainly produced in massive stars, but in order to have a quantitative understanding of the 26Al distribution, the cross section of all the nuclear reactions involved in its production should be accurately known. 25Mg(α,n)28Si is one of the reactions with the strongest impact on the synthesis of 26Al during explosive neon and carbon burning. Its cross section has been measured by many authors, but below 3 MeV, the literature data are still characterized by large uncertainties due to beam-induced background. The reaction rate reported by NACRE is based on unpublished data and, at higher energies, on Hauser-Feshbach calculations, disregarding other experimental cross section datasets. In order to improve the experimental knowledge of the 25Mg(α,n)28Si cross section, a new direct measurement has been performed at Legnaro National Laboratories. A pulsed alpha beam with energies E = 3-5 MeV was provided by the CN accelerator. The neutrons were detected with 10 liquid scintillators BC501 from the RIPEN array, positioned at different angles. g-n discrimination is achieved applying the Pulse Shape Analysis technique. Furthermore, measuring the neutron energy with the Time Of Flight method it is possible to disentangle the contribution to the cross section of different 28Si excited states, and to identify the background neutrons produced by (α,n) reactions with light contaminants in the setup. The angular distributions measured with this experimental system will be presented
- …