522 research outputs found
The development of policing in Britain in the next five years.
The British police service is currently going through a radical transformation phase. The present Tory-led
coalition government has set out an agenda to bring about drastic changes in policing. These proposed
changes are unprecedented in the history of policing since 1829.
The police service is governed by a tripartite arrangement of checks and balances laid down under the
Police Act 1964. By this I mean that there are three key players in relation to police governance in Britain: the
Home Secretary, the local police authority and the chief constable. The future of policing in the next five
years is set out clearly by the Home Secretary, Theresa May MP, under the Police Reform and Social
Responsibility Bill, which is currently being reviewed in the House of Lords.
The recent phone hacking scandal has made it imperative for the British public to have a closer look at the
police service in relation to proper accountability. There have been references to police corruption as far
back as the era of 'parish constables', dating back to 1800, when it was alleged that police officers took
bribes, got drunk whilst on duty and lacked moral credibility to protect and serve us (Critchley, 1978). In the
seventies and eighties the British public was informed of another scandal involving members of Scotland
Yard and criminal gangs in the East End of London. In this article, I shall argue that the issue of police
corruption is not a new phenomenon. It is has been an ongoing issue that has haunted the police for over a
century.
This article is divided into three parts. In the first part of the article I present the following issues: the
Metropolitan Police policing plan 2011-2014; the merits and demerits of the policing plan; tripartite police
accountability and its shortcomings; democratic accountability and localisation of policing; the
professionalisation of policing and the creation of the Police Body; review of police pay and benefits; and the
impact of this on police officers' morale.
In the second part of my article I present some of the criticisms levelled against the ongoing police reforms. I
will look at the criticisms from both internal and external perspectives. By internal criticism, I mean police
officers' opposition to the reforms. By external criticism, I mean criticisms from criminologists and members
of the British public.
In the third part of my article I made my position clear on where I stand in relation to the ongoing police
reforms. I shall argue that the current ongoing job cuts in the police service are a disaster waiting to happen,
and that our safety has been compromised by politicians. We are now living at the mercy of criminals and law breakers due to manpower shortage. We are all living witnesses to the ongoing public disturbances in
Tottenham, Enfield, Brixton, Peckham, Walthamstow and Croydon, in London. The speed of the spread of
these riots to other cities like Bristol, Birmingham, Manchester and Liverpool occurred on an unimaginable
scale. We all watched how difficult it was for the police to restore order and normality. Rioters looted and
plundered goods and burnt down buildings as if no laws existed in our country. A complete breakdown of law
and order put the lives of citizens at risk.
My article makes a passionate appeal to the present coalition government to rethink the issue of reducing the
numbers of police officers protecting us. I shall argue that we need more police officers in Britain not fewer.
The level of anger and social discontent is higher than the government ever anticipated, partly because of
economic hardship. My argument is that economic hardship is not an excuse to commit burglary, theft,
arson, murder and criminal damage with intent to endanger life. Rioters are shameless opportunists, a bunch
of hoodlums, criminals who have no place in any civilised society, who should be made to face the due
process of law
Structural remodeling and oligomerization of human cathelicidin on membranes suggest fibril-like structures as active species
Antimicrobial peptides as part of the mammalian innate immune system target and remove major bacterial pathogens, often through irreversible damage of their cellular membranes. To explore the mechanism by which the important cathelicidin peptide LL-37 of the human innate immune system interacts with membranes, we performed biochemical, biophysical and structural studies. The crystal structure of LL-37 displays dimers of anti-parallel helices and the formation of amphipathic surfaces. Peptide-detergent interactions introduce remodeling of this structure after occupation of defined hydrophobic sites at the dimer interface. Furthermore, hydrophobic nests are shaped between dimer structures providing another scaffold enclosing detergents. Both scaffolds underline the potential of LL-37 to form defined peptide-lipid complexes in vivo. After adopting the activated peptide conformation LL-37 can polymerize and selectively extract bacterial lipids whereby the membrane is destabilized. The supramolecular fibril-like architectures formed in crystals can be reproduced in a peptide-lipid system after nanogold-labelled LL-37 interacted with lipid vesicles as followed by electron microscopy. We suggest that these supramolecular structures represent the LL-37-membrane active state. Collectively, our study provides new insights into the fascinating plasticity of LL-37 demonstrated at atomic resolution and opens the venue for LL-37-based molecules as novel antibiotics.We would like to thank Sandra Delgado for the technical help in the preparation of the cryoEM vitrified grids and Dr. Isabel Uson and Dr. Ivan De Marino for the Arcimboldo software and valuable help. Funding was provided by the Unidad de Biofisica and the IKERBASQUE and MINECO science foundations
Recommended from our members
Interaction between a cationic surfactant-like peptide and lipid vesicles and its relationship to antimicrobial activity
We investigate the properties of an antimicrobial
surfactant-like peptide (Ala)6(Arg), A6R, containing a
cationic headgroup. The interaction of this peptide with
zwitterionic (DPPC) lipid vesicles is investigated using a range of microscopic, X-ray scattering, spectroscopic, and calorimetric methods. The β-sheet structure adopted by A6R is disrupted in the presence of DPPC. A strong effect on the
small-angle X-ray scattering profile is observed: the Bragg
peaks from the DPPC bilayers in the vesicle walls are
eliminated in the presence of A6R and only bilayer form factor peaks are observed. All of these observations point to the interaction of A6R with DPPC bilayers. These studies provide insight into interactions between a model cationic peptide and vesicles, relevant to understanding the action of antimicrobial peptides on lipid membranes. Notably, peptide A6R exhibits antimicrobial activity without membrane lysis
Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine
Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base
Finding a Disappearing Nontimber Forest Resource: Using Grounded Visualization to Explore Urbanization Impacts on Sweetgrass Basketmaking in Greater Mt. Pleasant, South Carolina
Despite growing interest in urbanization and its social and ecological impacts on formerly rural areas, empirical research remains limited. Extant studies largely focus either on issues of social exclusion and enclosure or ecological change. This article uses the case of sweetgrass basketmaking in Mt. Pleasant, South Carolina, to explore the implications of urbanization, including gentrification, for the distribution and accessibility of sweetgrass, an economically important nontimber forest product (NTFP) for historically African American communities, in this rapidly growing area. We explore the usefulness of grounded visualization for research efforts that are examining the existence of fringe ecologies associated with NTFP. Our findings highlight the importance of integrated qualitative and quantitative analyses for revealing the complex social and ecological changes that accompany both urbanization and rural gentrification
A Rigidity-Enhanced Antimicrobial Activity: A Case for Linear Cationic α-Helical Peptide HP(2–20) and Its Four Analogues
Linear cationic α-helical antimicrobial peptides are referred to as one of the most likely substitutes for common antibiotics, due to their relatively simple structures (≤40 residues) and various antimicrobial activities against a wide range of pathogens. Of those, HP(2–20) was isolated from Helicobacter pylori ribosomal protein. To reveal a mechanical determinant that may mediate the antimicrobial activities, we examined the mechanical properties and structural stabilities of HP(2–20) and its four analogues of same chain length by steered molecular dynamics simulation. The results indicated the following: the resistance of H-bonds to the tensile extension mediated the early extensive stage; with the loss of H-bonds, the tensile force was dispensed to prompt the conformational phase transition; and Young's moduli (N/m2) of the peptides were about 4∼8×109. These mechanical features were sensitive to the variation of the residue compositions. Furthermore, we found that the antimicrobial activity is rigidity-enhanced, that is, a harder peptide has stronger antimicrobial activity. It suggests that the molecular spring constant may be used to seek a new structure-activity relationship for different α-helical peptide groups. This exciting result was reasonably explained by a possible mechanical mechanism that regulates both the membrane pore formation and the peptide insertion
Genetic Dissection of an Exogenously Induced Biofilm in Laboratory and Clinical Isolates of E. coli
Microbial biofilms are a dominant feature of many human infections. However, developing effective strategies for controlling biofilms requires an understanding of the underlying biology well beyond what currently exists. Using a novel strategy, we have induced formation of a robust biofilm in Escherichia coli by utilizing an exogenous source of poly-N-acetylglucosamine (PNAG) polymer, a major virulence factor of many pathogens. Through microarray profiling of competitive selections, carried out in both transposon insertion and over-expression libraries, we have revealed the genetic basis of PNAG-based biofilm formation. Our observations reveal the dominance of electrostatic interactions between PNAG and surface structures such as lipopolysaccharides. We show that regulatory modulation of these surface structures has significant impact on biofilm formation behavior of the cell. Furthermore, the majority of clinical isolates which produced PNAG also showed the capacity to respond to the exogenously produced version of the polymer
Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides
Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations
PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data.
Although the majority of bacteria are harmless or even beneficial to their host, others are highly virulent and can cause serious diseases, and even death. Due to the constantly decreasing cost of high-throughput sequencing there are now many completely sequenced genomes available from both human pathogenic and innocuous strains. The data can be used to identify gene families that correlate with pathogenicity and to develop tools to predict the pathogenicity of newly sequenced strains, investigations that previously were mainly done by means of more expensive and time consuming experimental approaches. We describe PathogenFinde
- …