3 research outputs found
Recommended from our members
Real-time spatial characterization of micrometer-sized X-ray free-electron laser beams focused by bendable mirrors
A real-time and accurate characterization of the X-ray beam size is essential to enable a large variety of different experiments at free-electron laser facilities. Typically, ablative imprints are employed to determine shape and size of μm-focused X-ray beams. The high accuracy of this state-of-the-art method comes at the expense of the time required to perform an ex-situ image analysis. In contrast, diffraction at a curved grating with suitably varying period and orientation forms a magnified image of the X-ray beam, which can be recorded by a 2D pixelated detector providing beam size and pointing jitter in real time. In this manuscript, we compare results obtained with both techniques, address their advantages and limitations, and demonstrate their excellent agreement. We present an extensive characterization of the FEL beam focused to ≈1 μm by two Kirkpatrick-Baez (KB) mirrors, along with optical metrology slope profiles demonstrating their exceptionally high quality. This work provides a systematic and comprehensive study of the accuracy provided by curved gratings in real-time imaging of X-ray beams at a free-electron laser facility. It is applied here to soft X-rays and can be extended to the hard X-ray range. Furthermore, curved gratings, in combination with a suitable detector, can provide spatial properties of μm-focused X-ray beams at MHz repetition rate
The Heisenberg-RIXS instrument at the European XFEL
Resonant Inelastic X-ray Scattering (RIXS) is an ideal X-ray spectroscopy
method to push the combination of energy and time resolutions to the Fourier
transform ultimate limit, because it is unaffected by the core-hole lifetime
energy broadening. And in pump-probe experiments the interaction time is made
very short by the same core-hole lifetime. RIXS is very photon hungry so it
takes great advantage from high repetition rate pulsed X-ray sources like the
European XFEL. The hRIXS instrument is designed for RIXS experiments in the
soft X-ray range with energy resolution approaching the Fourier and the
Heisenberg limits. It is based on a spherical grating with variable line
spacing (VLS) and a position-sensitive 2D detector. Initially, two gratings are
installed to adequately cover the whole photon energy range. With optimized
spot size on the sample and small pixel detector the energy resolution can be
better than 40 meV at any photon energy below 1000 eV. At the SCS instrument of
the European XFEL the spectrometer can be easily positioned thanks to air-pads
on a high-quality floor, allowing the scattering angle to be continuously
adjusted over the 65-145 deg range. It can be coupled to two different sample
interaction chamber, one for liquid jets and one for solids, each equipped at
the state-of-the-art and compatible for optical laser pumping in collinear
geometry. The measured performances, in terms of energy resolution and count
rate on the detector, closely match design expectations. hRIXS is open to
public users since the summer of 2022.Comment: 43 pages, 12 figures, Supplemental Materia
Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL
13 pages, 5 figures. Supplementary Information as ancillary fileThe advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we present the results from the first megahertz repetition rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL. We illustrate the experimental capabilities that the SCS instrument offers, resulting from the operation at MHz repetition rates and the availability of the novel DSSC 2D imaging detector. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range