3,788 research outputs found
Social differences in women's use of personal care products: A study of magazine advertisements, 1950 - 1994
This study examined advertising for women's personal care products from 1950 through 1994 in widely read, long-lived magazines whose audience have different demographic profiles: Ladies' Home Journal, Mademoiselle, and Essence
Information geometry of density matrices and state estimation
Given a pure state vector |x> and a density matrix rho, the function
p(x|rho)= defines a probability density on the space of pure states
parameterised by density matrices. The associated Fisher-Rao information
measure is used to define a unitary invariant Riemannian metric on the space of
density matrices. An alternative derivation of the metric, based on square-root
density matrices and trace norms, is provided. This is applied to the problem
of quantum-state estimation. In the simplest case of unitary parameter
estimation, new higher-order corrections to the uncertainty relations,
applicable to general mixed states, are derived.Comment: published versio
Reporting back environmental exposure data and free choice learning.
Reporting data back to study participants is increasingly being integrated into exposure and biomonitoring studies. Informal science learning opportunities are valuable in environmental health literacy efforts and report back efforts are filling an important gap in these efforts. Using the University of Arizona's Metals Exposure Study in Homes, this commentary reflects on how community-engaged exposure assessment studies, partnered with data report back efforts are providing a new informal education setting and stimulating free-choice learning. Participants are capitalizing on participating in research and leveraging their research experience to meet personal and community environmental health literacy goals. Observations from report back activities conducted in a mining community support the idea that reporting back biomonitoring data reinforces free-choice learning and this activity can lead to improvements in environmental health literacy. By linking the field of informal science education to the environmental health literacy concepts, this commentary demonstrates how reporting data back to participants is tapping into what an individual is intrinsically motivated to learn and how these efforts are successfully responding to community-identified education and research needs
Quantum mechanical Carnot engine
A cyclic thermodynamic heat engine runs most efficiently if it is reversible.
Carnot constructed such a reversible heat engine by combining adiabatic and
isothermal processes for a system containing an ideal gas. Here, we present an
example of a cyclic engine based on a single quantum-mechanical particle
confined to a potential well. The efficiency of this engine is shown to equal
the Carnot efficiency because quantum dynamics is reversible. The quantum heat
engine has a cycle consisting of adiabatic and isothermal quantum processes
that are close analogues of the corresponding classical processes.Comment: 10 page
Classical Tensors and Quantum Entanglement I: Pure States
The geometrical description of a Hilbert space asociated with a quantum
system considers a Hermitian tensor to describe the scalar inner product of
vectors which are now described by vector fields. The real part of this tensor
represents a flat Riemannian metric tensor while the imaginary part represents
a symplectic two-form. The immersion of classical manifolds in the complex
projective space associated with the Hilbert space allows to pull-back tensor
fields related to previous ones, via the immersion map. This makes available,
on these selected manifolds of states, methods of usual Riemannian and
symplectic geometry. Here we consider these pulled-back tensor fields when the
immersed submanifold contains separable states or entangled states. Geometrical
tensors are shown to encode some properties of these states. These results are
not unrelated with criteria already available in the literature. We explicitly
deal with some of these relations.Comment: 16 pages, 1 figure, to appear in Int. J. Geom. Meth. Mod. Phy
An optimum Hamiltonian for non-Hermitian quantum evolution and the complex Bloch sphere
For a quantum system governed by a non-Hermitian Hamiltonian, we studied the
problem of obtaining an optimum Hamiltonian that generates nonunitary
transformations of a given initial state into a certain final state in the
smallest time . The analysis is based on the relationship between the
states of the two-dimensional subspace of the Hilbert space spanned by the
initial and final states and the points of the two-dimensional complex Bloch
sphere.Comment: 14 pages, 8 figure
Martingale Models for Quantum State Reduction
Stochastic models for quantum state reduction give rise to statistical laws
that are in most respects in agreement with those of quantum measurement
theory. Here we examine the correspondence of the two theories in detail,
making a systematic use of the methods of martingale theory. An analysis is
carried out to determine the magnitude of the fluctuations experienced by the
expectation of the observable during the course of the reduction process and an
upper bound is established for the ensemble average of the greatest
fluctuations incurred. We consider the general projection postulate of L\"uders
applicable in the case of a possibly degenerate eigenvalue spectrum, and derive
this result rigorously from the underlying stochastic dynamics for state
reduction in the case of both a pure and a mixed initial state. We also analyse
the associated Lindblad equation for the evolution of the density matrix, and
obtain an exact time-dependent solution for the state reduction that explicitly
exhibits the transition from a general initial density matrix to the L\"uders
density matrix. Finally, we apply Girsanov's theorem to derive a set of simple
formulae for the dynamics of the state in terms of a family of geometric
Brownian motions, thereby constructing an explicit unravelling of the Lindblad
equation.Comment: 30 pages LaTeX. Submitted to Journal of Physics
Quantum noise and stochastic reduction
In standard nonrelativistic quantum mechanics the expectation of the energy
is a conserved quantity. It is possible to extend the dynamical law associated
with the evolution of a quantum state consistently to include a nonlinear
stochastic component, while respecting the conservation law. According to the
dynamics thus obtained, referred to as the energy-based stochastic Schrodinger
equation, an arbitrary initial state collapses spontaneously to one of the
energy eigenstates, thus describing the phenomenon of quantum state reduction.
In this article, two such models are investigated: one that achieves state
reduction in infinite time, and the other in finite time. The properties of the
associated energy expectation process and the energy variance process are
worked out in detail. By use of a novel application of a nonlinear filtering
method, closed-form solutions--algebraic in character and involving no
integration--are obtained for both these models. In each case, the solution is
expressed in terms of a random variable representing the terminal energy of the
system, and an independent noise process. With these solutions at hand it is
possible to simulate explicitly the dynamics of the quantum states of
complicated physical systems.Comment: 50 page
- …