3,190 research outputs found

    A Development Environment for Visual Physics Analysis

    Full text link
    The Visual Physics Analysis (VISPA) project integrates different aspects of physics analyses into a graphical development environment. It addresses the typical development cycle of (re-)designing, executing and verifying an analysis. The project provides an extendable plug-in mechanism and includes plug-ins for designing the analysis flow, for running the analysis on batch systems, and for browsing the data content. The corresponding plug-ins are based on an object-oriented toolkit for modular data analysis. We introduce the main concepts of the project, describe the technical realization and demonstrate the functionality in example applications

    Crosstalk of Intercellular Signaling Pathways in the Generation of Midbrain Dopaminergic Neurons In Vivo and from Stem Cells

    Get PDF
    Dopamine-synthesizing neurons located in the mammalian ventral midbrain are at the center stage of biomedical research due to their involvement in severe human neuropsychiatric and neurodegenerative disorders, most prominently Parkinson’s Disease (PD). The induction of midbrain dopaminergic (mDA) neurons depends on two important signaling centers of the mammalian embryo: the ventral midline or floor plate (FP) of the neural tube, and the isthmic organizer (IsO) at the mid-/hindbrain boundary (MHB). Cells located within and close to the FP secrete sonic hedgehog (SHH), and members of the wingless-type MMTV integration site family (WNT1/5A), as well as bone morphogenetic protein (BMP) family. The IsO cells secrete WNT1 and the fibroblast growth factor 8 (FGF8). Accordingly, the FGF8, SHH, WNT, and BMP signaling pathways play crucial roles during the development of the mDA neurons in the mammalian embryo. Moreover, these morphogens are essential for the generation of stem cell-derived mDA neurons, which are critical for the modeling, drug screening, and cell replacement therapy of PD. This review summarizes our current knowledge about the functions and crosstalk of these signaling pathways in mammalian mDA neuron development in vivo and their applications in stem cell-based paradigms for the efficient derivation of these neurons in vitro

    Kliimamuutuste mõjud meie vööndi olulisematele lehtpuudele

    Get PDF
    Bakalaureusetöö eesmärgiks on anda ülevaade sellest, kuidas lähitulevikuks ennustatavad kliimamuutused (temperatuuri, atmosfääri suhtelise õhuniiskuse ja CO2 sisalduse tõusmine) mõjutavad meie kliimavööndi enamlevinuid lehtpuid (arukask, sookask, haab, hall- ja must lepp). Need on Eesti lehtpuude seas tähtsaimad puud nii ökoloogilises mõttes, sest moodustavad suurema osa lehtpuumetsadest, kui majanduslikus mõttes, sest nende puidu varud moodustavad Eesti metsade kogu puiduvarust üle 40%. Töös käsitletud uuringutest selgub, et ennustatavad kliimamuutused toovad nendele puuliikidele kaasa nii positiivseid tagajärgi, nagu produktsiooni suurenemine ja pikem kasvuperiood kui ka potentsiaalseid probleeme, nagu kahjurite ja patogeenide laialdasem levik

    Neural correlates of the use of prior knowledge in predictive coding

    Get PDF
    Every day, we use our sensory organs to perceive the environment around us. However, our perception not only depends on sensory information, but also on information already present in our brains, i.e. prior knowledge acquired by previous experience. The idea that prior knowledge is required for efficient perception goes back to Hermann von Helmholtz (1867). He raised the hypothesis that perception is a knowledge-driven inference process, in which prior knowledge allows to infer the (uncertain) causes of our sensory inputs. According to the currently very prominent “predictive coding theory” (e. g. Rao and Ballard, 1999; Friston, 2005, 2010; Hawkins and Blakeslee, 2005; Clark, 2012; Hohwy, 2013) this inference process is realized in our brains by using prior knowledge to build internal predictions for incoming information. Despite the increasing popularity of predictive coding theory in the last decade (see Clark, 2012 and comments to his article), previous research in the field has left out several important aspects: 1. The neural correlates of the use of prior knowledge are still widely unexplored; 2. Neurophysiological evidence for the neural implementation of predictive coding is limited and 3. Assumption-free approaches to study predictive coding mechanism are missing. In the present work, I try to fill these gaps using three studies with magnetoencephalographic (MEG) recordings in human participants: Study 1 (n = 48) investigates how prior knowledge from life-long experience influences perception. The results demonstrate that prediction errors induced by the violation of predictions based on life-long experience with faces are reflected in increased high-frequency gamma band activity (> 68 Hz). For studies 2 and 3, neurophysiological analysis is combined with information-theoretic analysis methods. These allow investigating the neural correlates of predictive coding with only few prior assumptions. In particular, the information-theoretic measure active information storage (AIS; Lizier et al., 2012; Wibral et al., 2014) can quantify how much information is maintained in neural activity (predictable information). I use AIS in order to study the neural correlates of activated prior knowledge in study 2 and 3. Study 2 (n = 52) assesses how prior knowledge is pre-activated in task relevant states to become usable for predictions. I find that pre-activation of prior knowledge for predictions about faces increases alpha and beta band related predictable information as measured by AIS in content specific brain areas. Study 3 (n patients = 19; n controls = 19) explores whether predictive coding related mechanism are impaired in autism spectrum disorder (ASD). The results show that alpha and beta band related predictable information is reduced in the brain of ASD patients, in particular in the posterior part of the default mode network. These findings indicate reduced use or precision of prior knowledge in ASD. In summary, the results presented in the present work illustrate the neural correlates of the use of prior knowledge in the predictive coding framework. They provide neurophysiological evidence for the link of prediction errors and fast neural activity (study 1, gamma band) as well as predictions and slower neural activity (study 2 and 3, alpha and beta band). These findings are in line with a theoretical proposal for the neural implementation of predictive coding theory (Bastos et al., 2012). Further, by application of AIS analysis (study 2 and 3) the present work introduces the largely assumption-free usage of information-theoretic measures to study the neural correlates of predictive coding in the human brain. In future, analysis of predictable information as measured by AIS may be applied to a broad variety of experiments studying predictive coding and also for research on neuropsychiatric disorders as has been demonstrated for ASD

    Cyclooxygenase 2: understanding the pathophysiological role through genetically altered mouse models

    Get PDF
    El pdf del artículo es la versión post-print.Cyclooxygenase (COX) -1 and –2 catalyze the first step in the biosynthesis of prostanoids. COX-1 is constitutively expressed in many tissues and seems to be involved in the house keeping function of prostanoids. COX-2, the inducible isoform, accounts for the elevated production of prostaglandins in response to various inflammatory stimuli, hormones and growth factors. COX-2 expression has been also associated with cell growth regulation, tissue remodelling and carcinogenesis. More of these characteristics have been elucidate through using COX selective inhibitors. Recent advances in transgenic and gene-targeting approaches allow a sophisticated manipulation of the mouse genome by gene addition, gene deletion or gene modifications. The development of COX-2 genetically altered mice has provided models to elucidate the physiological and pathophysiological roles of this enzyme.This work was supported by grants from Instituto de Salud Carlos III (Red de Centros C03/01), Generalitat Valenciana (GRUPOS03/072), Ministerio de Educación y Ciencia (SAF2004-00957) and Comunidad de Madrid (CAM2004-GR/SAL/0388).Peer reviewe

    High-Pressure Amorphous Nitrogen

    Full text link
    The phase diagram and stability limits of diatomic solid nitrogen have been explored in a wide pressure--temperature range by several optical spectroscopic techniques. A newly characterized narrow-gap semiconducting phase η\eta has been found to exist in a range of 80--270 GPa and 10--510 K. The vibrational and optical properties of the η\eta phase produced under these conditions indicate that it is largely amorphous and back transforms to a new molecular phase. The band gap of the η\eta phase is found to decrease with pressure indicating possible metallization by band overlap above 280 GPa.Comment: 5 pages, 4 figure

    Bis(2-amino-3-nitro­pyridinium) dihydrogen­diphosphate

    Get PDF
    The structure of the title compound, 2C5H6N3O2 +·H2P2O7 2−, contains infinite (H2P2O7 2−)n layers stacked perpendicular to the a axis. The 2-amino-3-nitro­pyridinium cations are arranged in pairs and are anchored between these layers, linking them by N—H⋯O and C—H⋯O hydrogen-bonding and electrostatic inter­actions between anionic and cationic species to form a three-dimensional network
    corecore