60 research outputs found

    The pressure medium as a solid-state oxygen buffer

    Get PDF
    We present a simple method to buffer oxygen fugacity at high pressures and high temperatures where the traditional 'double capsule' method is inappropriate. The pressure medium is doped with a metal which partially reacts with the free oxygen in the pore spaces of the, cell. The resultant finely intergrown metal-metal oxide assemblage buffers the oxygen fugacity in the sample as long as the capsule and furnace materials are oxygen permeable

    Habitable Planets: Interior Dynamics and Long-Term Evolution

    Get PDF
    Here, the state of our knowledge regarding the interior dynamics and evolution of habitable terrestrial planets including Earth and super-Earths is reviewed, and illustrated using state-of-the-art numerical models. Convection of the rocky mantle is the key process that drives the evolution of the interior: it causes plate tectonics, controls heat loss from the metallic core (which generates the magnetic field) and drives long-term volatile cycling between the atmosphere/ocean and interior. Geoscientists have been studying the dynamics and evolution of Earth's interior since the discovery of plate tectonics in the late 1960s and on many topics our understanding is very good, yet many first-order questions remain. It is commonly thought that plate tectonics is necessary for planetary habitability because of its role in long-term volatile cycles that regulate the surface environment. Plate tectonics is the surface manifestation of convection in the 2900-km deep rocky mantle, yet exactly how plate tectonics arises is still quite uncertain; other terrestrial planets like Venus and Mars instead have a stagnant lithosphere- essentially a single plate covering the entire planet. Nevertheless, simple scalings as well as more complex models indicate that plate tectonics should be easier on larger planets (super-Earths), other things being equal. The dynamics of terrestrial planets, both their surface tectonics and deep mantle dynamics, change over billions of years as a planet cools. Partial melting is a key process influencing solid planet evolution. Due to the very high pressure inside super-Earths' mantles the viscosity would normally be expected to be very high, as is also indicated by our density function theory (DFT) calculations. Feedback between internal heating, temperature and viscosity leads to a superadiabatic temperature profile and self-regulation of the mantle viscosity such that sluggish convection still occur

    Theoretical investigation of metastable Al 2

    Full text link

    The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle

    Full text link
    The temperature anomalies in the Earth's mantle associated with thermal convection1 can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present, however, such information is difficult to obtain directly through laboratory experiments. We have therefore taken advantage of recent advances in computer technology, and have performed finite-temperature ab initio molecular dynamics simulations of the elastic properties of MgSiO3 perovskite, the major mineral of the lower mantle, at relevant thermodynamic conditions. When combined with the results from tomographic images of the mantle, our results indicate that the lower mantle is either significantly anelastic or compositionally heterogeneous on large scales. We found the temperature contrast between the coldest and hottest regions of the mantle, at a given depth, to be about 800K at 1000 km, 1500K at 2000 km, and possibly over 2000K at the core-mantle boundary.Comment: Published in: Nature 411, 934-937 (2001
    corecore