2,470 research outputs found
Theory and design of InGaAsBi mid-infrared semiconductor lasers: type-I quantum wells for emission beyond 3 m on InP substrates
We present a theoretical analysis and optimisation of the properties and
performance of mid-infrared semiconductor lasers based on the dilute bismide
alloy InGaAsBi, grown on conventional (001) InP
substrates. The ability to independently vary the epitaxial strain and emission
wavelength in this quaternary alloy provides significant scope for band
structure engineering. Our calculations demonstrate that structures based on
compressively strained InGaAsBi quantum wells (QWs)
can readily achieve emission wavelengths in the 3 -- 5 m range, and that
these QWs have large type-I band offsets. As such, these structures have the
potential to overcome a number of limitations commonly associated with this
application-rich but technologically challenging wavelength range. By
considering structures having (i) fixed QW thickness and variable strain, and
(ii) fixed strain and variable QW thickness, we quantify key trends in the
properties and performance as functions of the alloy composition, structural
properties, and emission wavelength, and on this basis identify routes towards
the realisation of optimised devices for practical applications. Our analysis
suggests that simple laser structures -- incorporating
InGaAsBi QWs and unstrained ternary
InGaAs barriers -- which are compatible with established
epitaxial growth, provide a route to realising InP-based mid-infrared diode
lasers.Comment: Submitted versio
Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations
Ongoing millimeter VLBI observations with the Event Horizon Telescope allow
unprecedented study of the innermost portion of black hole accretion flows.
Interpreting the observations requires relativistic, time-dependent physical
modeling. We discuss the comparison of radiative transfer calculations from
general relativistic MHD simulations of Sagittarius A* and M87 with current and
future mm-VLBI observations. This comparison allows estimates of the viewing
geometry and physical conditions of the Sgr A* accretion flow. The viewing
geometry for M87 is already constrained from observations of its large-scale
jet, but, unlike Sgr A*, there is no consensus for its millimeter emission
geometry or electron population. Despite this uncertainty, as long as the
emission region is compact, robust predictions for the size of its jet
launching region can be made. For both sources, the black hole shadow may be
detected with future observations including ALMA and/or the LMT, which would
constitute the first direct evidence for a black hole event horizon.Comment: 8 pages, 2 figures, submitted to the proceedings of AHAR 2011: The
Central Kiloparse
Getting the Word Out in the Last Green Valley: Integrating Digital Video, Direct Mail, and Web-Based Information for Specific Target Audiences
A direct mail mini CD-Rom was developed to bring attention to the Green Valley Institute\u27s (an Extension Partnership Program) new Web site. A quasi-experimental survey design with random assignment to either a treatment or control group was employed to assess the effectiveness of the CD-Rom. The study revealed successes as well as limitations to this approach. Nearly a quarter of the recipients did not recall receiving it, but those who received and viewed the CD were significantly more familiar with the organization\u27s programs and goals, considered the Web site more useful, and had greater intentions to contact the organization for additional information and/or assistance in the future
Relative Astrometry of Compact Flaring Structures in Sgr A* with Polarimetric VLBI
We demonstrate that polarimetric interferometry can be used to extract
precise spatial information about compact polarized flares of Sgr A*. We show
that, for a faint dynamical component, a single interferometric baseline
suffices to determine both its polarization and projected displacement from the
quiescent intensity centroid. A second baseline enables two-dimensional
reconstruction of the displacement, and additional baselines can self-calibrate
using the flare, enhancing synthesis imaging of the quiescent emission. We
apply this technique to simulated 1.3-mm wavelength observations of a "hot
spot" embedded in a radiatively inefficient accretion disk around Sgr A*. Our
results indicate that, even with current sensitivities, polarimetric
interferometry with the Event Horizon Telescope can achieve ~5 microarcsecond
relative astrometry of compact flaring structures near Sgr A* on timescales of
minutes.Comment: 9 Pages, 4 Figures, accepted for publication in Ap
Impact of alloy disorder on the band structure of compressively strained GaBiAs
The incorporation of bismuth (Bi) in GaAs results in a large reduction of the
band gap energy (E) accompanied with a large increase in the spin-orbit
splitting energy (), leading to the condition that
which is anticipated to reduce so-called CHSH Auger
recombination losses whereby the energy and momentum of a recombining
electron-hole pair is given to a second hole which is excited into the
spin-orbit band. We theoretically investigate the electronic structure of
experimentally grown GaBiAs samples on (100) GaAs substrates by
directly comparing our data with room temperature photo-modulated reflectance
(PR) measurements. Our atomistic theoretical calculations, in agreement with
the PR measurements, confirm that E is equal to for
9. We then theoretically probe the inhomogeneous
broadening of the interband transition energies as a function of the alloy
disorder. The broadening associated with spin-split-off transitions arises from
conventional alloy effects, while the behaviour of the heavy-hole transitions
can be well described using a valence band-anticrossing model. We show that for
the samples containing 8.5% and 10.4% Bi the difficulty in identifying a clear
light-hole-related transition energy from the measured PR data is due to the
significant broadening of the host matrix light-hole states as a result of the
presence of a large number of Bi resonant states in the same energy range and
disorder in the alloy. We further provide quantitative estimates of the impact
of supercell size and the assumed random distribution of Bi atoms on the
interband transition energies in GaBiAs. Our calculations support
a type-I band alignment at the GaBiAs/GaAs interface, consistent
with recent experimental findings
Interferometric Detection of Linear Polarization from Sagittarius A* at 230 GHz
We measured the linear polarization of Sagittarius A* to be 7.2 +/- 0.6 % at
230 GHzusing the BIMA array with a resolution of 3.6 x 0.9 arcsec. This
confirms the previously reported detection with the JCMT 14-m antenna. Our high
resolution observations demonstrate that the polarization does not arise from
dust but from a synchrotron source associated with Sgr A*. We see no change in
the polarization position angle and only a small change in the polarization
fraction in four observations distributed over 60 days. We find a position
angle 139 +/- 4 degrees that differs substantially from what was found in
earlier JCMT observations at the same frequency. Polarized dust emission cannot
account for this discrepancy leaving variability and observational error as the
only explanations. The BIMA observations alone place an upper limit on the
magnitude of the rotation measure of 2 x 10^6 rad m^-2. These new observations
when combined with the JCMT observations at 150, 375 and 400 GHz suggest RM
=-4.3 +/- 0.1 x 10^5 rad m^-2. This RM may be caused by an external Faraday
screen. Barring a special geometry or a high number of field reversals, this RM
rules out accretion rates greater than ~ 10^-7 M_sun y^-1. This measurement is
inconsistent with high accretion rates necessary in standard advection
dominated accretion flow and Bondi-Hoyle models for Sgr A*. It argues for low
accretion rates as a major factor in the overall faintness of Sgr A*.Comment: accepted for publication in ApJ, 18 pages, 4 figure
The Intrinsic Size of Sagittarius A* from 0.35 cm to 6 cm
We present new high-resolution observations of Sagittarius A* at wavelengths
of 17.4 to 23.8 cm with the Very Large Array in A configuration with the Pie
Town Very Long Baseline Array antenna. We use the measured sizes to calibrate
the interstellar scattering law and find that the major axis size of the
scattering law is smaller by ~6% than previous estimates. Using the new
scattering law, we are able to determine the intrinsic size of Sgr A* at
wavelengths from 0.35 cm to 6 cm using existing results from the VLBA. The new
law increases the intrinsic size at 0.7 cm by ~20% and <5% at 0.35 cm. The
intrinsic size is 13^{+7}_{-3} Schwarzschild radii at 0.35 cm and is
proportional to lambda^gamma, where gamma is in the range 1.3 to 1.7.Comment: ApJL, in pres
The Search for Signatures Of Transient Mass Loss in Active Stars
The habitability of an exoplanet depends on many factors. One such factor is
the impact of stellar eruptive events on nearby exoplanets. Currently this is
poorly constrained due to heavy reliance on solar scaling relationships and a
lack of experimental evidence. Potential impacts of Coronal Mass Ejections
(CMEs), which are a large eruption of magnetic field and plasma from a star,
are space weather and atmospheric stripping. A method for observing CMEs as
they travel though the stellar atmosphere is the type II radio burst, and the
new LOw Frequency ARray (LOFAR) provides a means for detection. We report on 15
hours of observation of YZ Canis Minoris (YZ CMi), a nearby M dwarf flare star,
taken in LOFAR's beam-formed observation mode for the purposes of measuring
transient frequency-dependent low frequency radio emission. The observations
utilized Low-Band Antenna (10-90 MHz) or High-Band Antenna (110-190 MHz) for
five three-hour observation periods. In this data set, there were no confirmed
type II events in this frequency range. We explore the range of parameter space
for type II bursts constrained by our observations Assuming the rate of shocks
is a lower limit to the rate at which CMEs occur, no detections in a total of
15 hours of observation places a limit of shocks/hr for YZ CMi due to the stochastic nature of the events and
limits of observational sensitivity. We propose a methodology to interpret
jointly observed flares and CMEs which will provide greater constraints to CMEs
and test the applicability of solar scaling relations
Comparative transcriptomic analysis of whole blood mycobacterial growth assays and tuberculosis patients’ blood RNA profiles
In vitro whole blood infection models are used for elucidating the immune response to Mycobacterium tuberculosis (Mtb). They exhibit commonalities but also differences, to the in vivo blood transcriptional response during natural human Mtb disease. Here, we present a description of concordant and discordant components of the immune response in blood, quantified through transcriptional profiling in an in vitro whole blood infection model compared to whole blood from patients with tuberculosis disease. We identified concordantly and discordantly expressed gene modules and performed in silico cell deconvolution. A high degree of concordance of gene expression between both adult and paediatric in vivo-in vitro tuberculosis infection was identified. Concordance in paediatric in vivo vs in vitro comparison is largely characterised by immune suppression, while in adults the comparison is marked by concordant immune activation, particularly that of inflammation, chemokine, and interferon signalling. Discordance between in vitro and in vivo increases over time and is driven by T-cell regulation and monocyte-related gene expression, likely due to apoptotic depletion of monocytes and increasing relative fraction of longer-lived cell types, such as T and B cells. Our approach facilitates a more informed use of the whole blood in vitro model, while also accounting for its limitations
How the Charge Can Affect the Formation of Gravastars
In recent work we physically interpreted a special gravastar solution
characterized by a zero Schwarzschild mass. In fact, in that case, none
gravastar was formed and the shell expanded, leaving behind a de Sitter or a
Minkowski spacetime, or collapsed without forming an event horizon, originating
what we called a massive non-gravitational object. This object has two
components of non zero mass but the exterior spacetime is Minkowski or de
Sitter. One of the component is a massive thin shell and the other one is de
Sitter spacetime inside. The total mass of this object is zero Schwarzschild
mass, which characterizes an exterior vacuum spacetime. Here, we extend this
study to the case where we have a charged shell. Now, the exterior is a
Reissner-Nordstr\"om spacetime and, depending on the parameter
of the equation of state of the shell, and the charge, a
gravastar structure can be formed. We have found that the presence of the
charge contributes to the stability of the gravastar, if the charge is greater
than a critical value. Otherwise, a massive non-gravitational object is formed
for small charges.Comment: 17 pages and 7 figures, several typos corrected, accepted for
publication in JCA
- …