In recent work we physically interpreted a special gravastar solution
characterized by a zero Schwarzschild mass. In fact, in that case, none
gravastar was formed and the shell expanded, leaving behind a de Sitter or a
Minkowski spacetime, or collapsed without forming an event horizon, originating
what we called a massive non-gravitational object. This object has two
components of non zero mass but the exterior spacetime is Minkowski or de
Sitter. One of the component is a massive thin shell and the other one is de
Sitter spacetime inside. The total mass of this object is zero Schwarzschild
mass, which characterizes an exterior vacuum spacetime. Here, we extend this
study to the case where we have a charged shell. Now, the exterior is a
Reissner-Nordstr\"om spacetime and, depending on the parameter
ω=1−γ of the equation of state of the shell, and the charge, a
gravastar structure can be formed. We have found that the presence of the
charge contributes to the stability of the gravastar, if the charge is greater
than a critical value. Otherwise, a massive non-gravitational object is formed
for small charges.Comment: 17 pages and 7 figures, several typos corrected, accepted for
publication in JCA