4,153 research outputs found

    Magneto-optical Kerr effect in Eu1−xCaxB6Eu_{1-x}Ca_{x}B_{6}

    Full text link
    We have measured the magneto-optical Kerr rotation of ferromagnetic Eu1−xCaxB6Eu_{1-x}Ca_{x}B_{6} with x=0.2 and 0.4, as well as of YbB6YbB_{6} serving as the non-magnetic reference material. As previously for EuB6EuB_{6}, we could identify a feature at 1 eVeV in the Kerr response which is related with electronic transitions involving the localized 4f electron states. The absence of this feature in the data for YbB6YbB_{6} confirms the relevance of the partially occupied 4f states in shaping the magneto-optical features of EuEu-based hexaborides. Disorder by CaCa-doping broadens the itinerant charge carrier contribution to the magneto-optical spectra

    Estimating the Parameters of Sgr A*'s Accretion Flow Via Millimeter VLBI

    Get PDF
    Recent millimeter-VLBI observations of Sagittarius A* (Sgr A*) have, for the first time, directly probed distances comparable to the horizon scale of a black hole. This provides unprecedented access to the environment immediately around the horizon of an accreting black hole. We leverage both existing spectral and polarization measurements and our present understanding of accretion theory to produce a suite of generic radiatively inefficient accretion flow (RIAF) models of Sgr A*, which we then fit to these recent millimeter-VLBI observations. We find that if the accretion flow onto Sgr A* is well described by a RIAF model, the orientation and magnitude of the black hole's spin is constrained to a two-dimensional surface in the spin, inclination, position angle parameter space. For each of these we find the likeliest values and their 1-sigma & 2-sigma errors to be a=0(+0.4+0.7), inclination=50(+10+30)(-10-10) degrees, and position angle=-20(+31+107)(-16-29) degrees, when the resulting probability distribution is marginalized over the others. The most probable combination is a=0(+0.2+0.4), inclination=90(-40-50) degrees and position angle=-14(+7+11)(-7-11) degrees, though the uncertainties on these are very strongly correlated, and high probability configurations exist for a variety of inclination angles above 30 degrees and spins below 0.99. Nevertheless, this demonstrates the ability millimeter-VLBI observations, even with only a few stations, to significantly constrain the properties of Sgr A*.Comment: 10 pages, 7 figures, accepted by Ap

    Limits on the Position Wander of Sgr A*

    Full text link
    We present measurements with the VLBA of the variability in the centroid position of Sgr A* relative to a background quasar at 7-mm wavelength. We find an average centroid wander of 71 +/- 45 micro-arcsec for time scales between 50 and 100 min and 113 +/- 50 micro-arcsec for timescales between 100 and 200 min, with no secular trend. These are sufficient to begin constraining the viability of the hot-spot model for the radio variability of Sgr A*. It is possible to rule out hot spots with orbital radii above 15GM_SgrA*/c^2 that contribute more than 30% of the total 7-mm flux. However, closer or less luminous hot spots remain unconstrained. Since the fractional variability of Sgr A* during our observations was ~20% on time scales of hours, the hot-spot model for Sgr A*'s radio variability remains consistent with these limits. Improved monitoring of Sgr A*'s centroid position has the potential to place significant constraints upon the existence and morphology of inhomogeneities in a supermassive black hole accretion flow.Comment: 14 pages, 3 figures submitted to Ap

    Theory and design of Inx_{x}Ga1−x_{1-x}As1−y_{1-y}Biy_{y} mid-infrared semiconductor lasers: type-I quantum wells for emission beyond 3 μ\mum on InP substrates

    Get PDF
    We present a theoretical analysis and optimisation of the properties and performance of mid-infrared semiconductor lasers based on the dilute bismide alloy Inx_{x}Ga1−x_{1-x}As1−y_{1-y}Biy_{y}, grown on conventional (001) InP substrates. The ability to independently vary the epitaxial strain and emission wavelength in this quaternary alloy provides significant scope for band structure engineering. Our calculations demonstrate that structures based on compressively strained Inx_{x}Ga1−x_{1-x}As1−y_{1-y}Biy_{y} quantum wells (QWs) can readily achieve emission wavelengths in the 3 -- 5 μ\mum range, and that these QWs have large type-I band offsets. As such, these structures have the potential to overcome a number of limitations commonly associated with this application-rich but technologically challenging wavelength range. By considering structures having (i) fixed QW thickness and variable strain, and (ii) fixed strain and variable QW thickness, we quantify key trends in the properties and performance as functions of the alloy composition, structural properties, and emission wavelength, and on this basis identify routes towards the realisation of optimised devices for practical applications. Our analysis suggests that simple laser structures -- incorporating Inx_{x}Ga1−x_{1-x}As1−y_{1-y}Biy_{y} QWs and unstrained ternary In0.53_{0.53}Ga0.47_{0.47}As barriers -- which are compatible with established epitaxial growth, provide a route to realising InP-based mid-infrared diode lasers.Comment: Submitted versio

    Using Millimeter VLBI to Constrain RIAF Models of Sagittarius A*

    Get PDF
    The recent detection of Sagittarius A* at lambda = 1.3 mm on a baseline from Hawaii to Arizona demonstrates that millimeter wavelength very long baseline interferometry (VLBI) can now spatially resolve emission from the innermost accretion flow of the Galactic center region. Here, we investigate the ability of future millimeter VLBI arrays to constrain the spin and inclination of the putative black hole and the orientation of the accretion disk major axis within the context of radiatively inefficient accretion flow (RIAF) models. We examine the range of baseline visibility and closure amplitudes predicted by RIAF models to identify critical telescopes for determining the spin, inclination, and disk orientation of the Sgr A* black hole and accretion disk system. We find that baseline lengths near 3 gigalambda have the greatest power to distinguish amongst RIAF model parameters, and that it will be important to include new telescopes that will form north-south baselines with a range of lengths. If a RIAF model describes the emission from Sgr A*, it is likely that the orientation of the accretion disk can be determined with the addition of a Chilean telescope to the array. Some likely disk orientations predict detectable fluxes on baselines between the continental United States and even a single 10-12 m dish in Chile. The extra information provided from closure amplitudes by a four-antenna array enhances the ability of VLBI to discriminate amongst model parameters.Comment: Accepted for publication in ApJ

    The Event Horizon of M87

    Get PDF
    The 6 billion solar mass supermassive black hole at the center of the giant elliptical galaxy M87 powers a relativistic jet. Observations at millimeter wavelengths with the Event Horizon Telescope have localized the emission from the base of this jet to angular scales comparable to the putative black hole horizon. The jet might be powered directly by an accretion disk or by electromagnetic extraction of the rotational energy of the black hole. However, even the latter mechanism requires a confining thick accretion disk to maintain the required magnetic flux near the black hole. Therefore, regardless of the jet mechanism, the observed jet power in M87 implies a certain minimum mass accretion rate. If the central compact object in M87 were not a black hole but had a surface, this accretion would result in considerable thermal near-infrared and optical emission from the surface. Current flux limits on the nucleus of M87 strongly constrain any such surface emission. This rules out the presence of a surface and thereby provides indirect evidence for an event horizon.Comment: 9 pages, 2 figures, submitted to Ap

    Event-Horizon-Telescope Evidence for Alignment of the Black Hole in the Center of the Milky Way with the Inner Stellar Disk

    Full text link
    Observations of the black hole in the center of the Milky Way with the Event Horizon Telescope at 1.3 mm have revealed a size of the emitting region that is smaller than the size of the black-hole shadow. This can be reconciled with the spectral properties of the source, if the accretion flow is seen at a relatively high inclination (50-60 degrees). Such an inclination makes the angular momentum of the flow, and perhaps of the black hole, nearly aligned with the angular momenta of the orbits of stars that lie within 3 arcsec from the black hole. We discuss the implications of such an alignment for the properties of the black hole and of its accretion flow. We argue that future Event-Horizon-Telescope observations will not only refine the inclination of Sgr A* but also measure precisely its orientation on the plane of the sky.Comment: To appear in the Astrophysical Journa

    Strong deflection limit of black hole gravitational lensing with arbitrary source distances

    Full text link
    The gravitational field of supermassive black holes is able to strongly bend light rays emitted by nearby sources. When the deflection angle exceeds π\pi, gravitational lensing can be analytically approximated by the so-called strong deflection limit. In this paper we remove the conventional assumption of sources very far from the black hole, considering the distance of the source as an additional parameter in the lensing problem to be treated exactly. We find expressions for critical curves, caustics and all lensing observables valid for any position of the source up to the horizon. After analyzing the spherically symmetric case we focus on the Kerr black hole, for which we present an analytical 3-dimensional description of the higher order caustic tubes.Comment: 20 pages, 8 figures, appendix added. In press on Physical Review
    • …
    corecore