48 research outputs found

    Transferability of hydrological models and ensemble averaging methods between contrasting climatic periods

    Get PDF
    Understanding hydrological model predictive capabilities under contrasting climate conditions enables more robust decision making. Using Differential Split Sample Testing (DSST), we analyze the performance of six hydrological models for 37 Irish catchments under climate conditions unlike those used for model training. Additionally, we consider four ensemble averaging techniques when examining interperiod transferability. DSST is conducted using 2/3 year noncontinuous blocks of (i) the wettest/driest years on record based on precipitation totals and (ii) years with a more/less pronounced seasonal precipitation regime. Model transferability between contrasting regimes was found to vary depending on the testing scenario, catchment, and evaluation criteria considered. As expected, the ensemble average outperformed most individual ensemble members. However, averaging techniques differed considerably in the number of times they surpassed the best individual model member. Bayesian Model Averaging (BMA) and the Granger-Ramanathan Averaging (GRA) method were found to outperform the simple arithmetic mean (SAM) and Akaike Information Criteria Averaging (AICA). Here GRA performed better than the best individual model in 51%–86% of cases (according to the Nash-Sutcliffe criterion). When assessing model predictive skill under climate change conditions we recommend (i) setting up DSST to select the best available analogues of expected annual mean and seasonal climate conditions; (ii) applying multiple performance criteria; (iii) testing transferability using a diverse set of catchments; and (iv) using a multimodel ensemble in conjunction with an appropriate averaging technique. Given the computational efficiency and performance of GRA relative to BMA, the former is recommended as the preferred ensemble averaging technique for climate assessment

    Using a scenario-neutral framework to avoid potential maladaptation to future flood risk

    Get PDF
    This study develops a coherent framework to detect those catchment types associated with ahigh risk of maladaptation to futureflood risk. Using the“scenario‐neutral”approach to impactassessment the sensitivity of Irish catchments tofluvialflooding is examined in the context of nationalclimate change allowances. A predefined sensitivity domain is used to quantifyflood responses to +2 °Cmean annual temperature with incremental changes in the seasonality and mean of the annual precipitationcycle. The magnitude of the 20‐yearflood is simulated at each increment using two rainfall‐runoff models(GR4J, NAM), then concatenated as response surfaces for 35 sample catchments. A typology of catchmentsensitivity is developed using clustering and discriminant analysis of physical attributes. The same attributesare used to classify 215 ungauged/data‐sparse catchments. To address possible redundancies, the exposure ofdifferent catchment types to projected climate is established using an objectively selected subset of theCoupled Model Intercomparison Project Phase 5 ensemble. Hydrological model uncertainty is shown tosignificantly influence sensitivity and have a greater effect than ensemble bias. A nationalflood riskallowance of 20%, considering all 215 catchments is shown to afford protection against ~48% to 98% of theuncertainty in the Coupled Model Intercomparison Project Phase 5 subset (Representative ConcentrationPathway 8.5; 2070–2099), irrespective of hydrological model and catchment type. However, results indicatethat assuming a standard national or regional allowance could lead to local over/under adaptation. Herein,catchments with relatively less storage are sensitive to seasonal amplification in the annual cycle ofprecipitation and warrant special attention

    An evaluation of persistent meteorological drought using a homogeneous Island of Ireland precipitation network

    Get PDF
    This paper investigates the spatial and temporal properties of persistent meteorological droughts using the homogeneous Island of Ireland Precipitation (IIP) network. Relative to a 1961–1990 baseline period it is shown that the longest observed run of below average precipitation since the 1850s lasted up to 5 years (10 half-year seasons) at sites in southeast and east Ireland, or 3 years across the network as a whole. Dry spell and wet spell length distributions were represented by a first-order Markov model which yields realistic runs of below average rainfall for individual sites and IIP series. This model shows that there is relatively high likelihood (p = 0.125) of a 5-year dry spell at Dublin, and that near unbroken dry runs of 10 years or more are conceivable. We suggest that the IIP network and attendant rainfall deficit modelling provide credible data for stress testing water supply and drought plans under extreme conditions

    Irish droughts in newspaper archives: rediscovering forgotten hazards?

    Get PDF
    Irish newspaper collections are a rich source of information on historical droughts. Following a search of 250 years of such archives, this paper brings to light four newspaper articles describing three drought events that convey the cultural impacts and unusual societal responses to nineteenth century drought in Ireland. Amongst the archives we find two poems from 1806 and 1893, a call to pray for rain in 1887, and a suggestion for weather modification in 1893. These records demonstrate that, contrary to recent experience, Ireland is surprisingly prone to drought

    Impact of stoichiometry and strain on Ge1−x Sn x alloys from first principles calculations

    Get PDF
    We calculate the electronic structure of germanium-tin (Ge1-x Sn x ) binary alloys for 0 ≤ x ≤ 1 using density functional theory (DFT). Relaxed alloys with semiconducting or semimetallic behaviour as a function of Sn composition x are identified, and the impact of epitaxial strain is investigated by constraining supercell lattice constants perpendicular to the [001] growth direction to the lattice constants of Ge, zinc telluride, or cadmium telluride substrates. It is found that application of 1% tensile strain reduces the Sn composition required to bring the (positive) direct band gap to zero by approximately 5% compared to a relaxed Ge1-x Sn x alloy having the same gap at Γ. On the other hand, compressive strain has comparatively less impact on the alloy band gap at Γ. Using DFT calculated alloy lattice and elastic constants, the critical thickness for Ge1-x Sn x thin films as a function of x and substrate lattice constant is estimated, and validated against supercell DFT calculations and experiment. The analysis correctly predicts the Sn composition range at which it becomes energetically favourable for Ge1-x Sn x /Ge to become amorphous. The influence of stoichiometry and strain is examined in relation to reducing the magnitude of the inverted ('negative') Γ7-Γ8+ band gap, which is characteristic of semimetallic alloy electronic structure. Based on our findings, strategies for engineering the semimetal-to-semiconductor transition via strain and quantum confinement in Ge1-x Sn x nanostructures are proposed. © 2021 IOP Publishing Ltd

    Multi-century trends to wetter winters and drier summers in the England and Wales precipitation series explained by observational and sampling bias in early records

    Get PDF
    Globally, few precipitation records extend to the 18th century. The England Wales Precipitation (EWP) series is a notable exception with continuous monthly records from 1766. EWP has found widespread use across diverse fields of research including trend detection, evaluation of climate model simulations, as a proxy for mid-latitude atmospheric circulation, a predictor in long-term European gridded precipitation data sets, the assessment of drought and extremes, tree-ring reconstructions and as a benchmark for other regional series. A key finding from EWP has been the multi-centennial trends towards wetter winters and drier summers. We statistically reconstruct seasonal EWP using independent, quality-assured temperature, pressure and circulation indices. Using a sleet and snow series for the UK derived by Profs. Gordon Manley and Elizabeth Shaw to examine winter reconstructions, we show that precipitation totals for pre-1870 winters are likely biased low due to gauge under-catch of snowfall and a higher incidence of snowfall during this period. When these factors are accounted for in our reconstructions, the observed trend to wetter winters in EWP is no longer evident. For summer, we find that pre-1820 precipitation totals are too high, likely due to decreasing network density and less certain data at key stations. A significant trend to drier summers is not robustly present in our reconstructions of the EWP series. While our findings are more certain for winter than summer, we highlight (a) that extreme caution should be exercised when using EWP to make inferences about multi-centennial trends, and; (b) that assessments of 18th and 19th Century winter precipitation should be aware of potential snow biases in early records. Our findings underline the importance of continual re-appraisal of established long-term climate data sets as new evidence becomes available. It is also likely that the identified biases in winter EWP have distorted many other long-term European precipitation series

    The power and potential of BIOMAP to elucidate host-microbiome interplay in skin inflammatory diseases

    Get PDF
    The two most common chronic inflammatory skin diseases are atopic dermatitis (AD) and psoriasis. The underpinnings of the remarkable degree of clinical heterogeneity of AD and psoriasis are poorly understood and, as a consequence, disease onset and progression are unpredictable and the optimal type and time point for intervention are as yet unknown. The BIOMAP project is the first IMI (Innovative Medicines Initiative) project dedicated to investigating the causes and mechanisms of AD and psoriasis and to identify potential biomarkers responsible for the variation in disease outcome. The consortium includes 7 large pharmaceutical companies and 25 non-industry partners including academia. Since there is mounting evidence supporting an important role for microbial exposures and our microbiota as factors mediating immune polarization and AD and psoriasis pathogenesis, an entire work package is dedicated to the investigation of skin and gut microbiome linked to AD or psoriasis. The large collaborative BIOMAP project will enable the integration of patient cohorts, data and knowledge in unprecedented proportions. The project has a unique opportunity with a potential to bridge and fill the gaps between current problems and solutions. This review highlights the power and potential of the BIOMAP project in the investigation of microbe-host interplay in AD and psoriasis.Peer reviewe
    corecore