828 research outputs found
Does it really matter? Separating the effects of musical training on syntax acquisition
The possible transfer of musical expertise to the acquisition of syntactical structures in first and second language has emerged recently as an intriguing topic in the research of cognitive processes. However, it is unlikely that the benefits of musical training extend equally to the acquisition of all syntactical structures. As cognitive transfer presumably requires overlapping processing components and brain regions involved in these processing components, one can surmise that transfer between musical ability and syntax acquisition would be limited to structural elements that are shared between the two. We propose that musical expertise transfers only to the processing of recursive long-distance dependencies inherent in hierarchical syntactic structures. In this study, we taught fifty-six participants with widely varying degrees of musical expertise the artificial language BROCANTO, which allows the direct comparison of long-distance and local dependencies. We found that the quantity of musical training (measured in accumulated hours of practice and instruction) explained unique variance in performance in the long-distance dependency condition only. These data suggest that musical training facilitates the acquisition specifically of hierarchical syntactic structures
Improving the Accuracy of the Boundary Integral Method Based on the Helmholtz Integral
Several recent papers in the literature have been based on various forms of the Helmholtz integral to compute the radiation fields of vibrating bodies. The surface integral form is given. The symbols of P,R micron, rho,G,R,V, and S micron are acoustic pressure, source coordinate, angular frequency, fluid density, Green function, field coordinate, surface velocity and body surface respectively. A discretized form of the surface integral is also given. Solutions to the surface integral are complicated with the singularity of the Green function at R=R micron and with the uniqueness problem at interior eigen frequencies of the enclosed space. The use of the interior integral circumvents the singularity problem since the field points are chosen in the interior space of the vibrating body where a zero pressure condition exists. The interior integral form is given. The method to improve the accuracy is detailed. Examples of the method is presented for a variety of radiators
Gauged flavour symmetry for the light generations
We study the phenomenology of a model where an SU(2)^3 flavour symmetry
acting on the first two generation quarks is gauged and Yukawa couplings for
the light generations are generated by a see-saw mechanism involving heavy
fermions needed to cancel flavour-gauge anomalies. We find that, in constrast
to the SU(3)^3 case studied in the literature, most of the constraints related
to the third generation, like electroweak precision bounds or B physics
observables, can be evaded, while characteristic collider signatures are
predicted.Comment: 16 pages, 3 figure
The Geography of Logistics
At the end of the 19th century, the Triad's strategic location as a railroad hub helped trigger the growth of the region's textile industry. Today, as we experience another major economic transformation, our region's roads, rails and runways have once again become the key to the Triad's economic future
Charming CP Violation and Dipole Operators from RS Flavor Anarchy
Recently the LHCb collaboration reported evidence for direct CP violation in
charm decays. The value is sufficiently large that either substantially
enhanced Standard Model contributions or non-Standard Model physics is required
to explain it. In the latter case only a limited number of possibilities would
be consistent with other existing flavor-changing constraints. We show that
warped extra dimensional models that explain the quark spectrum through flavor
anarchy can naturally give rise to contributions of the size required to
explain the the LHCb result. The D meson asymmetry arises through a sizable
CP-violating contribution to a chromomagnetic dipole operator. This happens
naturally without introducing inconsistencies with existing constraints in the
up quark sector. We discuss some subtleties in the loop calculation that are
similar to those in Higgs to \gamma\gamma. Loop-induced dipole operators in
warped scenarios and their composite analogs exhibit non-trivial dependence on
the Higgs profile, with the contributions monotonically decreasing when the
Higgs is pushed away from the IR brane. We show that the size of the dipole
operator quickly saturates as the Higgs profile approaches the IR brane,
implying small dependence on the precise details of the Higgs profile when it
is quasi IR localized. We also explain why the calculation of the coefficient
of the lowest dimension 5D operator is guaranteed to be finite. This is true
not only in the charm sector but also with other radiative processes such as
electric dipole moments, b to s\gamma, \epsilon'/\epsilon_K and \mu\ to
e\gamma. We furthermore discuss the interpretation of this contribution within
the framework of partial compositeness in four dimensions and highlight some
qualitative differences between the generic result of composite models and that
obtained for dynamics that reproduces the warped scenario.Comment: 14 page
Flavour physics from an approximate U(2)^3 symmetry
The quark sector of the Standard Model exhibits an approximate U(2)^3 flavour
symmetry. This symmetry, broken in specific directions dictated by minimality,
can explain the success of the Cabibbo-Kobayashi-Maskawa picture of flavour
mixing and CP violation, confirmed by the data so far, while allowing for
observable deviations from it, as expected in most models of ElectroWeak
Symmetry Breaking. Building on previous work in the specific context of
supersymmetry, we analyze the expected effects and we quantify the current
bounds in a general Effective Field Theory framework. As a further relevant
example we then show how the U(2)^3 symmetry and its breaking can be
implemented in a generic composite Higgs model and we make a first analysis of
its peculiar consequences. We also discuss how some partial extension of U(2)^3
to the lepton sector can arise, both in general and in composite Higgs models.
An optimistic though conceivable interpretation of the considerations developed
in this paper gives reasons to think that new physics searches in the flavour
sector may be about to explore an interesting realm of phenomena.Comment: 29 pages, 5 figure
A consistent picture for large penguins in D -> pi+ pi-, K+ K-
A long-standing puzzle in charm physics is the large difference between the
D0 -> K+ K- and D0 -> pi+ pi- decay rates. Recently, the LHCb and CDF
collaborations reported a surprisingly large difference between the direct CP
asymmetries, Delta A_CP, in these two modes. We show that the two puzzles are
naturally related in the Standard Model via s- and d-quark "penguin
contractions". Their sum gives rise to Delta A_CP, while their difference
contributes to the two branching ratios with opposite sign. Assuming nominal
SU(3) breaking, a U-spin fit to the D0 -> K+ pi-, pi+ K-, pi+ pi-, K+ K- decay
rates yields large penguin contractions that naturally explain Delta A_CP.
Expectations for the individual CP asymmetries are also discussed.Comment: 24 pages, 8 figure
On the Standard Model prediction for BR(B{s,d} to mu+ mu-)
The decay Bs to mu+ mu- is one of the milestones of the flavor program at the
LHC. We reappraise its Standard Model prediction. First, by analyzing the
theoretical rate in the light of its main parametric dependence, we highlight
the importance of a complete evaluation of higher-order electroweak
corrections, at present known only in the large-mt limit, and leaving sizable
dependence on the definition of electroweak parameters. Using insights from a
complete calculation of such corrections for K to pi bar{nu} nu decays, we find
a scheme in which NLO electroweak corrections are likely to be negligible.
Second, we address the issue of the correspondence between the initial and the
final state detected by the experiments, and those used in the theoretical
prediction. Particular attention is devoted to the effect of the soft
radiation, that has not been discussed for this mode in the previous
literature, and that can lead to O(10%) corrections to the decay rate. The
"non-radiative" branching ratio (that is equivalent to the branching ratio
fully inclusive of bremsstrahlung radiation) is estimated to be (3.23 +/- 0.27)
x 10^{-9} for the flavor eigenstate, with the main uncertainty resulting from
the value of f_{Bs}, followed by the uncertainty due to higher order
electroweak corrections. Applying the same strategy to Bd to mu+ mu-, we find
for its non-radiative branching ratio (1.07 +/- 0.10) x 10^{-10}.Comment: 15 pages. v3: very minor changes to match the journal version (EPJC
- âŠ