109 research outputs found

    Systems with finite communication bandwidth constraints. I. State estimation problems

    Full text link

    Optimal path planning for nonholonomic robotics systems via parametric optimisation

    Get PDF
    Abstract. Motivated by the path planning problem for robotic systems this paper considers nonholonomic path planning on the Euclidean group of motions SE(n) which describes a rigid bodies path in n-dimensional Euclidean space. The problem is formulated as a constrained optimal kinematic control problem where the cost function to be minimised is a quadratic function of translational and angular velocity inputs. An application of the Maximum Principle of optimal control leads to a set of Hamiltonian vector field that define the necessary conditions for optimality and consequently the optimal velocity history of the trajectory. It is illustrated that the systems are always integrable when n = 2 and in some cases when n = 3. However, if they are not integrable in the most general form of the cost function they can be rendered integrable by considering special cases. This implies that it is possible to reduce the kinematic system to a class of curves defined analytically. If the optimal motions can be expressed analytically in closed form then the path planning problem is reduced to one of parameter optimisation where the parameters are optimised to match prescribed boundary conditions.This reduction procedure is illustrated for a simple wheeled robot with a sliding constraint and a conventional slender underwater vehicle whose velocity in the lateral directions are constrained due to viscous damping

    Geometrical dissipation for dynamical systems

    Full text link
    On a Riemannian manifold (M,g)(M,g) we consider the k+1k+1 functions F1,...,Fk,GF_1,...,F_k,G and construct the vector fields that conserve F1,...,FkF_1,...,F_k and dissipate GG with a prescribed rate. We study the geometry of these vector fields and prove that they are of gradient type on regular leaves corresponding to F1,...,FkF_1,...,F_k. By using these constructions we show that the cubic Morrison dissipation and the Landau-Lifschitz equation can be formulated in a unitary form

    Optimal controller gain tuning for robust stability of spacecraft formation

    No full text
    The spacecraft formation control problem sets high demands to the performance, especially with respect to positional accuracy. The problem is further complicated due to scarce fuel resources and limited actuation effects, in addition to the many sources of disturbances. This paper addresses the problem of finding the optimal gains of spacecraft formation controllers. By optimal, we mean the gains that minimizes a cost functional which penalizes both the control efforts and the state deviation, while still guaranteeing stability of the closed-loop systems in the presence of disturbances

    Alterations of Structures and Functions of Useful Proteins : Cholesterol Oxidase and Human Metallothionein

    Get PDF
    This paper overviews a series of the authors’ recent contributions to dynamic quantizer design for control. The problem considered here is to find a dynamic quantizer such that the resulting quantized system is an optimal approximation of an ideal unquantized system.We show here a fundamental solution to this problem and briefly review several results toward real applications

    Young people's attitudes to religious diversity : quantitative approaches from social psychology and empirical theology

    Get PDF
    This essay discusses the design of the quantitative component of the ‘Young People’s Attitudes to Religious Diversity’ project, conceived by Professor Robert Jackson within the Warwick Religions and Education Research Unit, and presents some preliminary findings from the data. The quantitative component followed and built on the qualitative component within a mixed method design. The argument is advanced in seven steps: introducing the major sources of theory on which the quantitative approach builds from the psychology of religion and from empirical theology; locating the empirical traditions of research among young people that have shaped the study; clarifying the notions and levels of measurement employed in the study anticipating the potential for various forms of data analysis; discussing some of the established measures incorporated in the survey; defining the ways in which the sample was structured to reflect the four nations of the UK, and London; illustrating the potential within largely descriptive cross-tabulation forms of analysis; and illustrating the potential within more sophisticated multivariate analytic models

    Empirical Determination of Bang-Bang Operations

    Full text link
    Strong and fast "bang-bang" (BB) pulses have been recently proposed as a means for reducing decoherence in a quantum system. So far theoretical analysis of the BB technique relied on model Hamiltonians. Here we introduce a method for empirically determining the set of required BB pulses, that relies on quantum process tomography. In this manner an experimenter may tailor his or her BB pulses to the quantum system at hand, without having to assume a model Hamiltonian.Comment: 14 pages, 2 eps figures, ReVTeX4 two-colum
    • 

    corecore