1,392 research outputs found

    OCTS and SeaWiFS Bio-Optical Algorithm and Product Validation and Intercomparison in US Coastal Waters

    Get PDF
    The successful launch of the National Space Development Agency of Japan (NASDA) Ocean Color and Temperature Sensor (OCTS) in August 1996, and the launch of Orbital Science Corporation's (OSC) Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) in August 1997 signaled the beginning of a new era for ocean color research and application. These data may be used to remotely evaluate 1) water quality, 2) transport of sediments and adhered pollutants, 3) primary production, upon which commercial shellfish and finfish populations depend for food, and 4) harmful algal blooms which pose a threat to public health and economies of affected areas. Several US government agencies have recently expressed interest in monitoring U.S. coastal waters using optical remote sensing. This renewed interest is broadly driven by 1) resource management concerns over the impact of coastward shifts in population and land use on the ecosystems of estuaries, wetlands, nearshore benthic environments and fisheries, 2) recognition of the need to understand short time scale global change due to urbanization of sensitive land-margin ecosystems, and 3) national security issues. Satellite ocean color sensors have the potential to furnish data at the appropriate time and space scales to evaluate and resolve these concerns and problems. In this draft technical memorandum, we outline our progress during the first year of our SIMBIOS project to evaluate ocean color bio-optical algorithms and products generated using OCTS and SeaWiFS data in coastal US waters

    Emerging Methods for the Study of Coastal Ecosystem Landscape Structure and Change

    Get PDF
    An introduction is presented in which the editor discusses various remote-sensing approaches to improve knowledge for studying changes in coastal ecosystem landscape

    Life History and Habitat of the Rare Patch-nosed Salamander (Urspelerpes brucei)

    Get PDF
    We examined the life history and habitat characteristics for the Patch-nosed Salamander, Urspelerpes brucei. Body-size measurements of individuals captured using litter bags and by hand from 2008 to 2010 indicated that the larval period lasts at least 2 y, salamanders attain reproductive maturity at or shortly after metamorphosis, and adults have very little variation in body size. Occupied streams are characterized by small size, little water, and narrow, steep-walled ravines. Within occupied streams, larval capture rate was significantly and negatively related to mean water depth, underscoring the importance of protecting headwaters. We hypothesize that the only known population of U. brucei east of the Tugaloo River was isolated from the west-bank populations by the tremendous increase in w

    Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression data frequently contain missing values, however, most down-stream analyses for microarray experiments require complete data. In the literature many methods have been proposed to estimate missing values via information of the correlation patterns within the gene expression matrix. Each method has its own advantages, but the specific conditions for which each method is preferred remains largely unclear. In this report we describe an extensive evaluation of eight current imputation methods on multiple types of microarray experiments, including time series, multiple exposures, and multiple exposures Ă— time series data. We then introduce two complementary selection schemes for determining the most appropriate imputation method for any given data set.</p> <p>Results</p> <p>We found that the optimal imputation algorithms (LSA, LLS, and BPCA) are all highly competitive with each other, and that no method is uniformly superior in all the data sets we examined. The success of each method can also depend on the underlying "complexity" of the expression data, where we take complexity to indicate the difficulty in mapping the gene expression matrix to a lower-dimensional subspace. We developed an entropy measure to quantify the complexity of expression matrixes and found that, by incorporating this information, the entropy-based selection (EBS) scheme is useful for selecting an appropriate imputation algorithm. We further propose a simulation-based self-training selection (STS) scheme. This technique has been used previously for microarray data imputation, but for different purposes. The scheme selects the optimal or near-optimal method with high accuracy but at an increased computational cost.</p> <p>Conclusion</p> <p>Our findings provide insight into the problem of which imputation method is optimal for a given data set. Three top-performing methods (LSA, LLS and BPCA) are competitive with each other. Global-based imputation methods (PLS, SVD, BPCA) performed better on mcroarray data with lower complexity, while neighbour-based methods (KNN, OLS, LSA, LLS) performed better in data with higher complexity. We also found that the EBS and STS schemes serve as complementary and effective tools for selecting the optimal imputation algorithm.</p

    Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury.

    Get PDF
    Although axonal regeneration after CNS injury is limited, partial injury is frequently accompanied by extensive functional recovery. To investigate mechanisms underlying spontaneous recovery after incomplete spinal cord injury, we administered C7 spinal cord hemisections to adult rhesus monkeys and analyzed behavioral, electrophysiological and anatomical adaptations. We found marked spontaneous plasticity of corticospinal projections, with reconstitution of fully 60% of pre-lesion axon density arising from sprouting of spinal cord midline-crossing axons. This extensive anatomical recovery was associated with improvement in coordinated muscle recruitment, hand function and locomotion. These findings identify what may be the most extensive natural recovery of mammalian axonal projections after nervous system injury observed to date, highlighting an important role for primate models in translational disease research
    • …
    corecore