OCTS and SeaWiFS Bio-Optical Algorithm and Product Validation and Intercomparison in US Coastal Waters

Abstract

The successful launch of the National Space Development Agency of Japan (NASDA) Ocean Color and Temperature Sensor (OCTS) in August 1996, and the launch of Orbital Science Corporation's (OSC) Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) in August 1997 signaled the beginning of a new era for ocean color research and application. These data may be used to remotely evaluate 1) water quality, 2) transport of sediments and adhered pollutants, 3) primary production, upon which commercial shellfish and finfish populations depend for food, and 4) harmful algal blooms which pose a threat to public health and economies of affected areas. Several US government agencies have recently expressed interest in monitoring U.S. coastal waters using optical remote sensing. This renewed interest is broadly driven by 1) resource management concerns over the impact of coastward shifts in population and land use on the ecosystems of estuaries, wetlands, nearshore benthic environments and fisheries, 2) recognition of the need to understand short time scale global change due to urbanization of sensitive land-margin ecosystems, and 3) national security issues. Satellite ocean color sensors have the potential to furnish data at the appropriate time and space scales to evaluate and resolve these concerns and problems. In this draft technical memorandum, we outline our progress during the first year of our SIMBIOS project to evaluate ocean color bio-optical algorithms and products generated using OCTS and SeaWiFS data in coastal US waters

    Similar works