686 research outputs found
Decomposition driven interface evolution for layers of binary mixtures: {II}. Influence of convective transport on linear stability
We study the linear stability with respect to lateral perturbations of free
surface films of polymer mixtures on solid substrates. The study focuses on the
stability properties of the stratified and homogeneous steady film states
studied in Part I [U. Thiele, S. Madruga and L. Frastia, Phys. Fluids 19,
122106 (2007)]. To this aim, the linearized bulk equations and boundary
equations are solved using continuation techniques for several different cases
of energetic bias at the surfaces, corresponding to linear and quadratic
solutal Marangoni effects.
For purely diffusive transport, an increase in film thickness either
exponentially decreases the lateral instability or entirely stabilizes the
film. Including convective transport leads to a further destabilization as
compared to the purely diffusive case. In some cases the inclusion of
convective transport and the related widening of the range of available film
configurations (it is then able to change its surface profile) change the
stability behavior qualitatively.
We furthermore present results regarding the dependence of the instability on
several other parameters, namely, the Reynolds number, the Surface tension
number and the ratio of the typical velocities of convective and diffusive
transport.Comment: Published in Physics of Fluic
Polymer drift in a solvent by force acting on one polymer end
We investigate the effect of hydrodynamic interactions on the non-equilibrium
drift dynamics of an ideal flexible polymer pulled by a constant force applied
at one end of the polymer using the perturbation theory and the renormalization
group method. For moderate force, if the polymer elongation is small, the
hydrodynamic interactions are not screened and the velocity and the
longitudinal elongation of the polymer are computed using the renormalization
group method. Both the velocity and elongation are nonlinear functions of the
driving force in this regime. For large elongation we found two regimes. For
large force but finite chain length the hydrodynamic interactions are
screened. For large chain lengths and a finite force the hydrodynamic
interactions are only partially screened, which in three dimensions results in
unusual logarithmic corrections to the velocity and the longitudinal
elongation.Comment: 6 page
Flow-injection of branched polymers inside nanopores
Flexible chains (linear or branched) can be forced to enter into a narrow
capillary by using a hydrodynamic flow. Here, we correct our earlier
description of this problem by considering the progressive nature of the
suction process. We find that the critical current for penetration, , is
controlled by the entry of a single blob of the capillary size, and that its
scaling structure is the same for branched and linear chains.Comment: Submitted to Europhysics Letter
Transient pores in vesicles
International audienceWe present our observations of transient pores in giant unilamellar vesicles, placed under tension, by optical illumination. When the membrane tension reached a certain level, transient pores appeared. Pore opening is driven by the membrane tension, s, and its closure by the pore's line tension, T. By use of viscous mixtures of glycerol and water, we slowed down the leak out of the inner liquid in the presence of a pore. This allowed pores to reach large sizes (a few micrometres) and last at least a few seconds so that they could be visualized by fluorescence videomicroscopy. Line tension was inferred from the measurements of the closure velocity of the pores. By addition of cholesterol, which increased T (reducing pore lifetimes), or of surfactants, which decreased T (increasing pore lifetimes), we demonstrate how T , and consequently pore lifetimes, can be controlled over nearly two orders of magnitude. Addition of surfactants also has a dramatic effect on vesicle fusion. We discuss how our results can be extended to less viscous aqueous solutions which are more relevant for liposomal drug delivery formulations
Dynamics of Strongly Deformed Polymers in Solution
Bead spring models for polymers in solution are nonlinear if either the
finite extensibility of the polymer, excluded volume effects or hydrodynamic
interactions between polymer segments are taken into account. For such models
we use a powerful method for the determination of the complete relaxation
spectrum of fluctuations at {\it steady state}. In general, the spectrum and
modes differ significantly from those of the linear Rouse model. For a tethered
polymer in uniform flow the differences are mainly caused by an inhomogeneous
distribution of tension along the chain and are most pronounced due to the
finite chain extensibility. Beyond the dynamics of steady state fluctuations we
also investigate the nonlinear response of the polymer to a {\em large sudden
change} in the flow. This response exhibits several distinct regimes with
characteristic decay laws and shows features which are beyond the scope of
single mode theories such as the dumbbell model.Comment: 7 pages, 3 figure
Transient pores in stretched vesicles: role of leak-out
International audienceWe have visualized macroscopic transient pores in mechanically stretched giant vesicles. They can be observed only if the vesicles are prepared in a viscous solution to slow down the leak-out of the internal liquid. We study here theoretically the full dynamics of growth (driven by surface tension) and closure (driven by line tension) of these large pores. We write two coupled equations of the time evolution of the radii r(t) of the hole and R(t) of the vesicle, which both act on the release of the membrane tension. We find four periods in the life of a transient pore: (I) exponential growth of the young pore; (II) stop of the growth at a maximum radius rm; (III) slow closure limited by the leak-out; (IV) fast closure below a critical radius, when leak-out becomes negligible. Ultimately the membrane is completely resealed
Straightening of Thermal Fluctuations in Semi-Flexible Polymers by Applied Tension
We investigate the propagation of a suddenly applied tension along a
thermally excited semi-flexible polymer using analytical approximations,
scaling arguments and numerical simulation. This problem is inherently
non-linear. We find sub-diffusive propagation with a dynamical exponent of 1/4.
By generalizing the internal elasticity, we show that tense strings exhibit
qualitatively different tension profiles and propagation with an exponent of
1/2.Comment: Latex file; with three postscript figures; .ps available at
http://dept.physics.upenn.edu/~nelson/pull.p
Polymeric Nanoparticles Limit the Collective Migration of Cellular Aggregates
Controlling the propagation of primary tumors is fundamental to avoiding the epithelial to mesenchymal transition process leading to the dissemination and seeding of tumor cells throughout the body. Here we demonstrate that nanoparticles (NPs) limit the propagation of cell aggregates of CT26 murine carcinoma cells used as tumor models. The spreading behavior of these aggregates incubated with NPs is studied on fibronectin-coated substrates. The cells spread with the formation of a cell monolayer, the precursor film, around the aggregate. We study the effect of NPs added either during or after the formation of aggregates. We demonstrate that, in both cases, the spreading of the cell monolayer is slowed down in the presence of NPs and occurs only above a threshold concentration that depends on the size and surface chemistry of the NPs. The density of cells in the precursor films, measured by confocal microscopy, shows that the NPs stick cells together. The mechanism of slowdown is explained by the increase in cell-cell interactions due to the NPs adsorbed on the membrane of the cells. The present results demonstrate that NPs can modulate the collective migration of cells; therefore, they may have important implications for cancer treatment.Peer reviewe
- …