91 research outputs found
A comparison of third-generation semi-invasive arterial waveform analysis with thermodilution in patients undergoing coronary surgery
Uncalibrated semi-invasive continous monitoring of cardiac index (CI) has recently gained increasing interest. The aim of the present study was to compare the accuracy of CI determination based on arterial waveform analysis with transpulmonary thermodilution. Fifty patients scheduled for elective coronary surgery were studied after induction of anaesthesia and before and after cardiopulmonary bypass (CPB), respectively. Each patient was monitored with a central venous line, the PiCCO system, and the FloTrac/Vigileo-system. Measurements included CI derived by transpulmonary thermodilution and uncalibrated semi-invasive pulse contour analysis. Percentage changes of CI were calculated. There was a moderate, but significant correlation between pulse contour CI and thermodilution CI both before (r(2) = 0.72, P < 0.0001) and after (r(2) = 0.62, P < 0.0001) CPB, with a percentage error of 31% and 25%, respectively. Changes in pulse contour CI showed a significant correlation with changes in thermodilution CI both before (r(2) = 0.52, P < 0.0001) and after (r(2) = 0.67, P < 0.0001) CPB. Our findings demonstrated that uncalibrated semi-invasive monitoring system was able to reliably measure CI compared with transpulmonary thermodilution in patients undergoing elective coronary surgery. Furthermore, the semi-invasive monitoring device was able to track haemodynamic changes and trends
Automation Concepts for Industrial-Scale Production of Seaweed
In order to industrialize macroalgal cultivation in Norway, new automated methods and solutions for seeding, deployment and harvesting need to be developed. Today's solutions are time and resource demanding, still yielding volumes nationally in the range of 100–200 tons per year in total (not including wild harvest), while the potential is in the megaton range. Standardization of equipment and automation can be one way to upscale production. Here we present results from a design study of a module-based solution for industrial cultivation, with specific solutions for spinning of thin seedling strings onto longlines, and a robotic module for interaction with the submerged farm at deployment and harvest. A reduced-scale physical prototype of the farm concept with the robot has been built for testing of deployment and harvesting techniques. The concept has been named SPOKe: Standardized Production of Kelp.publishedVersio
Automation Concepts for Industrial-Scale Production of Seaweed
In order to industrialize macroalgal cultivation in Norway, new automated methods and solutions for seeding, deployment and harvesting need to be developed. Today's solutions are time and resource demanding, still yielding volumes nationally in the range of 100–200 tons per year in total (not including wild harvest), while the potential is in the megaton range. Standardization of equipment and automation can be one way to upscale production. Here we present results from a design study of a module-based solution for industrial cultivation, with specific solutions for spinning of thin seedling strings onto longlines, and a robotic module for interaction with the submerged farm at deployment and harvest. A reduced-scale physical prototype of the farm concept with the robot has been built for testing of deployment and harvesting techniques. The concept has been named SPOKe: Standardized Production of Kelp.publishedVersio
Impact of an Interleukin-1 Receptor Antagonist and Erythropoietin on Experimental Myocardial Ischemia/Reperfusion Injury
Background. Revascularization of infarcted myocardium results in release of inflammatory cytokines mediating myocardial reperfusion injury and heart failure. Blockage of inflammatory pathways dampens myocardial injury and reduces infarct size. We compared the impact of the interleukin-1 receptor antagonist Anakinra and erythropoietin on myocardial ischemia/reperfusion injury. In contrast to others, we hypothesized that drug administration prior to reperfusion reduces myocardial damage. Methods and Results. 12–15 week-old Lewis rats were subjected to myocardial ischemia by a 1 hr occlusion of the left anterior descending coronary artery. After 15 min of ischemia, a single shot of Anakinra (2 mg/kg body weight (bw)) or erythropoietin (5000 IE/kg bw) was administered intravenously. In contrast to erythropoietin, Anakinra decreased infarct size (P < 0.05, N = 4/group) and troponin T levels (P < 0.05, N = 4/group). Conclusion. One-time intravenous administration of Anakinra prior to myocardial reperfusion reduces infarct size in experimental ischemia/reperfusion injury. Thus, Anakinra may represent a treatment option in myocardial infarction prior to revascularization
Feasibility and beneficial effects of an early goal directed therapy after cardiac arrest: evaluation by conductance method
Although beneficial effects of an early goal directed therapy (EGDT) after cardiac arrest and successful return of spontaneous circulation (ROSC) have been described, clinical implementation in this period seems rather difficult. The aim of the present study was to investigate the feasibility and the impact of EGDT on myocardial damage and function after cardiac resuscitation. A translational pig model which has been carefully adapted to the clinical setting was employed. After 8 min of cardiac arrest and successful ROSC, pigs were randomized to receive either EGDT (EGDT group) or therapy by random computer-controlled hemodynamic thresholds (noEGDT group). Therapeutic algorithms included blood gas analysis, conductance catheter method, thermodilution cardiac output and transesophageal echocardiography. Twenty-one animals achieved successful ROSC of which 13 pigs survived the whole experimental period and could be included into final analysis. cTnT and LDH concentrations were lower in the EGDT group without reaching statistical significance. Comparison of lactate concentrations between 1 and 8 h after ROSC exhibited a decrease to nearly baseline levels within the EGDT group (1 h vs 8 h: 7.9 vs. 1.7 mmol/l, P < 0.01), while in the noEGDT group lactate concentrations did not significantly decrease. The EGDT group revealed a higher initial need for fluids (P < 0.05) and less epinephrine administration (P < 0.05) post ROSC. Conductance method determined significant higher values for preload recruitable stroke work, ejection fraction and maximum rate of pressure change in the ventricle for the EGDT group. EGDT after cardiac arrest is associated with a significant decrease of lactate levels to nearly baseline and is able to improve systolic myocardial function. Although the results of our study suggest that implementation of an EGDT algorithm for post cardiac arrest care seems feasible, the impact and implementation of EGDT algorithms after cardiac arrest need to be further investigated
Effects of petrogenic pollutants on North Atlantic and Arctic Calanus copepods: From molecular mechanisms to population impacts
Oil and gas industries in the Northern Atlantic Ocean have gradually moved closer to the Arctic areas, a process expected to be further facilitated by sea ice withdrawal caused by global warming. Copepods of the genus Calanus hold a key position in these cold-water food webs, providing an important energetic link between primary production and higher trophic levels. Due to their ecological importance, there is a concern about how accidental oil spills and produced water discharges may impact cold-water copepods. In this review, we summarize the current knowledge of the toxicity of petroleum on North Atlantic and Arctic Calanus copepods. We also review how recent development of high-quality transcriptomes from RNA-sequencing of copepods have identified genes regulating key biological processes, like molting, diapause and reproduction in Calanus copepods, to suggest linkages between exposure, molecular mechanisms and effects on higher levels of biological organization. We found that the available ecotoxicity threshold data for these copepods provide valuable information about their sensitivity to acute petrogenic exposures; however, there is still insufficient knowledge regarding underlying mechanisms of toxicity and the potential for long-term implications of relevance for copepod ecology and phenology. Copepod transcriptomics has expanded our understanding of how key biological processes are regulated in cold-water copepods. These advances can improve our understanding of how pollutants affect biological processes, and thus provide the basis for new knowledge frameworks spanning the effect continuum from molecular initiating events to adverse effects of regulatory relevance. Such efforts, guided by concepts such as adverse outcome pathways (AOPs), enable standardized and transparent characterization and evaluation of knowledge and identifies research gaps and priorities. This review suggests enhancing mechanistic understanding of exposure-effect relationships to better understand and link biomarker responses to adverse effects to improve risk assessments assessing ecological effects of pollutant mixtures, like crude oil, in Arctic areas.publishedVersio
Dynamic and volumetric variables reliably predict fluid responsiveness in a porcine model with pleural effusion
Background: The ability of stroke volume variation (SVV), pulse pressure variation (PPV) and global end-diastolic volume (GEDV) for prediction of fluid responsiveness in presence of pleural effusion is unknown. The aim of the present study was to challenge the ability of SVV, PPV and GEDV to predict fluid responsiveness in a porcine model with pleural effusions.
Methods: Pigs were studied at baseline and after fluid loading with 8 ml kg−1 6% hydroxyethyl starch. After withdrawal of 8 ml kg−1 blood and induction of pleural effusion up to 50 ml kg−1 on either side, measurements at baseline and after fluid loading were repeated. Cardiac output, stroke volume, central venous pressure (CVP) and pulmonary occlusion pressure (PAOP) were obtained by pulmonary thermodilution, whereas GEDV was determined by transpulmonary thermodilution. SVV and PPV were monitored continuously by pulse contour analysis.
Results: Pleural effusion was associated with significant changes in lung compliance, peak airway pressure and stroke volume in both responders and non-responders. At baseline, SVV, PPV and GEDV reliably predicted fluid responsiveness (area under the curve 0.85 (p<0.001), 0.88 (p<0.001), 0.77 (p = 0.007). After induction of pleural effusion the ability of SVV, PPV and GEDV to predict fluid responsiveness was well preserved and also PAOP was predictive. Threshold values for SVV and PPV increased in presence of pleural effusion.
Conclusions: In this porcine model, bilateral pleural effusion did not affect the ability of SVV, PPV and GEDV to predict fluid responsiveness
- …