370 research outputs found

    A Broad Search for Counterrotating Gas and Stars: Evidence for Mergers and Accretion

    Get PDF
    We measure the frequency of bulk gas-stellar counterrotation in a sample of 67 galaxies drawn from the Nearby Field Galaxy Survey, a broadly representative survey of the local galaxy population down to M_B-15. We detect 4 counterrotators among 17 E/S0's with extended gas emission (24% +8 -6). In contrast, we find no clear examples of bulk counterrotation among 38 Sa-Sbc spirals, although one Sa does show peculiar gas kinematics. This result implies that, at 95% confidence, no more than 8% of Sa-Sbc spirals are bulk counterrotators. Among types Sc and later, we identify only one possible counterrotator, a Magellanic irregular. We use these results together with the physical properties of the counterrotators to constrain possible origins for this phenomenon.Comment: 19 pages, 4 figures, AJ, accepte

    A reliable rainfall–runoff model for flood forecasting: review and application to a semi-urbanized watershed at high flood risk in Italy

    Get PDF
    Many rainfall–runoff (RR) models are available in the scientific literature. Selecting the best structure and parameterization for a model is not straightforward and depends on a broad number of factors, including climatic conditions, catchment characteristics, temporal/spatial resolution and model objectives. In this study, the RR model 'Modello Idrologico Semi-Distribuito in continuo' (MISDc), mainly developed for flood simulation in Mediterranean basins, was tested on the Seveso basin, which is stressed several times a year by flooding events mainly caused by excessive urbanization. The work summarizes a compendium of the MISDc applications over a wide range of catchments in European countries and then it analyses the performances over the Seveso basin. The results show a good fit behaviour during both the calibration and the validation periods with a Nash–Sutcliffe coefficient index larger than 0.9. Moreover, the median volume and peak discharge errors calculated on several flood events were less than 25%. In conclusion, we can be assured that the reliability and computational speed could make the MISDc model suitable for flood estimation in many catchments of different geographical contexts and land use characteristics. Moreover, MISDc will also be useful for future support of real-time decision-making for flood risk management in the Seveso basin

    Decoration of nanovesicles with pH (low) insertion peptide (pHLIP) for targeted delivery

    Get PDF
    Acidity at surface of cancer cells is a hallmark of tumor microenvironments, which does not depend on tumor perfusion, thus it may serve as a general biomarker for targeting tumor cells. We used the pH (low) insertion peptide (pHLIP) for decoration of liposomes and niosomes. pHLIP senses pH at the surface of cancer cells and inserts into the membrane of targeted cells, and brings nanomaterial to close proximity of cellular membrane. DMPC liposomes and Tween 20 or Span 20 niosomes with and without pHLIP in their coating were fully characterized in order to obtain fundamental understanding on nanocarrier features and facilitate the rational design of acidity sensitive nanovectors. The samples stability over time and in presence of serum was demonstrated. The size, ζ-potential, and morphology of nanovectors, as well as their ability to entrap a hydrophilic probe and modulate its release were investigated. pHLIP decorated vesicles could be useful to obtain a prolonged (modified) release of biological active substances for targeting tumors and other acidic diseased tissues

    Model cell membrane interaction with a bioinspired amphoteric polymer

    Get PDF
    We present recent investigation by means of nanoscale techniques on biocompatible linear polyamidoamines with amphoteric character, namely AGMA1 and ARGO7. These polymers have been shown of extremely promising and already proved medical interest, comprising their strong protection actions against virus infection, mainly papilloma and herpes and the extremely low toxicity of their DNA complexes, with respect to other used polymers such as PEI and protamine, applied in nanovector design for gene delivery. Our studies focus on the most important of these polymers, AGMA1, a prevailingly cationic 4-aminobutylguanidine-deriving PAA, whose mechanism of action is so far not fully understood. The current understanding is that its interaction with cell surfaces by means of glycosaminoglycans (HSPG) has a major role in its protective action against viruses. Yet, AGMA1 is active also against HPV-31, whose attachment does not appear to be dependent on HSPG. HPV-31, whose attachment does not appear to be dependent on HSPG. Therefore, AGMA1 binds other (as yet unidentified) receptors on the cell surface. As the known recipient is the HS carbohydrate moiety, other sugars rich membrane components have been proposed as probable AGMA1 target. Therefore, to shed a light on the mechanism of interaction of the polymer with sugar containing biologically relevant molecules, not HS, we have investigated AGMA1 in interaction with glycophyngolipids, Specifically, we studied multicomponent symmetric vesicles enriched in ganglioside GM1 built to mimic biological membrane domains, in the presence of AGMA1, At physiological pH, electrostatic effects should be the relevant interactions between GM1 and AGMA1. Taking advantage of the same mechanism we investigated the possibility of building lipid based core-shell particles to vehiculate AGMA1/siRNA complexes. Moreover, since it is probable that AGMA1 interacts with the barrier of mucus which cover the involved tissue we have extended our investigations also to mucin, constituting the biological barrier to the target tissues of the medical application of the polymers

    Model cell membrane interaction with a bioinspired amphoteric polymer

    Get PDF
    We present recent investigation by means of nanoscale techniques on biocompatible linear polyamidoamines with amphoteric character, namely AGMA1 and ARGO7. These polymers have been shown of extremely promising and already proved medical interest, comprising their strong protection actions against virus infection, mainly papilloma and herpes and the extremely low toxicity of their DNA complexes, with respect to other used polymers such as PEI and protamine, applied in nanovector design for gene delivery. Our studies focus on the most important of these polymers, AGMA1, a prevailingly cationic 4-aminobutylguanidine-deriving PAA, whose mechanism of action is so far not fully understood. The current understanding is that its interaction with cell surfaces by means of glycosaminoglycans (HSPG) has a major role in its protective action against viruses. Yet, AGMA1 is active also against HPV-31, whose attachment does not appear to be dependent on HSPG. HPV-31, whose attachment does not appear to be dependent on HSPG. Therefore, AGMA1 binds other (as yet unidentified) receptors on the cell surface. As the known recipient is the HS carbohydrate moiety, other sugars rich membrane components have been proposed as probable AGMA1 target. Therefore, to shed a light on the mechanism of interaction of the polymer with sugar containing biologically relevant molecules, not HS, we have investigated AGMA1 in interaction with glycophyngolipids, Specifically, we studied multicomponent symmetric vesicles enriched in ganglioside GM1 built to mimic biological membrane domains, in the presence of AGMA1, At physiological pH, electrostatic effects should be the relevant interactions between GM1 and AGMA1. Taking advantage of the same mechanism we investigated the possibility of building lipid based core-shell particles to vehiculate AGMA1/siRNA complexes. Moreover, since it is probable that AGMA1 interacts with the barrier of mucus which cover the involved tissue we have extended our investigations also to mucin, constituting the biological barrier to the target tissues of the medical application of the polymers

    Interaction of mucins with bioinspired polymers and drug delivery particles

    Get PDF
    Mucins are glycoproteins with high molecular weight and an abundance of negatively charged oligosaccharide side chains, representing the main components in the mucous gels apart from water. Mucin structure consists of a flexible backbone (mainly serine and threonine residues) which serves as anchoring points for oligosaccharide side chains, and hydrophobic \u201cnaked domains\u201d enriched in cysteine residues. The latter can form inter-molecular bonds via disulphide links, promoting mucin association in solution. Therefore, mucins can establish adhesive interactions with particulates/biomacromolecules via electrostatic interactions, van der Waals forces, hydrophobic forces, hydrogen bonding, or chain entanglement. Mucosal drug delivery vehicles can either penetrate rapidly or establish prolonged contact. However, their development is of great challenge because little is still known about the interactions between mucin and other macromolecules. We are currently working on a comprehensive study of the interaction between mucin and macromolecules of interest for pharmaceutical developments by complementary techniques. To this scope, we employ biocompatible natural and synthetic polymers with different physical-chemical characteristics. Among them, linear polyamidoamines with amphoteric character are particularly interesting for their cyto-biocompatibility. It is indeed crucial to characterise such interactions not only in the bulk but also at the interface, since complexation between mucins and biomacromolecules takes place close to the cell membrane surface. Moreover, the strategy to overcome mucus barrier and achieve long retention time in the cell surface is to develop nano-agents which can effectively penetrate the mucus layer and accumulate at the epithelial surface. In this framework we present preliminary investigations in the bulk by small angle x-ray scattering (SAXS) and at the solid-liquid interface by employing quartz crystal microbalance (QCM-D)

    Depicting conformational ensembles of \u3b1-synuclein by single molecule force spectroscopy and native mass spectroscopy

    Get PDF
    Description of heterogeneous molecular ensembles, such as intrinsically disordered proteins, represents a challenge in structural biology and an urgent question posed by biochemistry to interpret many physiologically important, regulatory mechanisms. Single-molecule techniques can provide a unique contribution to this field. This work applies single molecule force spectroscopy to probe conformational properties of \u3b1-synuclein in solution and its conformational changes induced by ligand binding. The goal is to compare data from such an approach with those obtained by native mass spectrometry. These two orthogonal, biophysical methods are found to deliver a complex picture, in which monomeric \u3b1-synuclein in solution spontaneously populates compact and partially compacted states, which are differently stabilized by binding to aggregation inhibitors, such as dopamine and epigallocatechin-3-gallate. Analyses by circular dichroism and Fourier-transform infrared spectroscopy show that these transitions do not involve formation of secondary structure. This comparative analysis provides support to structural interpretation of charge-state distributions obtained by native mass spectrometry and helps, in turn, defining the conformational components detected by single molecule force spectroscopy

    El aceite de oliva en nutrición clínica

    Get PDF
    The different beneficial effects of olive oil have a rational and scientific basis due to advances in the knowledge of lipid metabolism. The evidence that for a similar plasma cholesterol concentration, the rate of cardiovascular deaths is lower in the Mediterranean countries than in other ones, suggests that the beneficial effects of olive oil may not be only related to the known quantitative changes in plasma lipoproteins, but also to other, as yet unknown or little known, anti-atherogenic factors. The peculiarities of olive oil in terms of certain biochemical, biological and nutritional characteristics, open up a field of application in normal clinical practice. The benefits of olive oil in clinical nutrition correlate with its action on lipid metabolism and the cardiovascular system. Even a moderate increase in the ingestion of monounsaturated fats and a reduction in the ingestion of carbohydrates could be more advantageous in those patients with diabetes and hypertriglyceridemia and/or in those where loss of weight is not a priority. Different studies have also demonstrated the benefits of olive oil in different inflammatory and autoimmune diseases, such as rheumatoid arthritis. The chemical composition of extra virgin olive oil contributes to daily requirements of essential fatty acids and active antioxidant nutrients in vitamin E deficiency. This particular and well-balanced situation [oleic acid (18:1 n -9) and minor components in an ideal ratio] undoubtedly has a significant relevance in human clinical nutrition.Los avances en el conocimiento del metabolismo lipídico están permitiendo establecer las bases científicas de los efectos saludables del aceite de oliva. En los países del área Mediterránea, la mortalidad cardiovascular es menor que en otros, aunque la concentración de colesterol en sangre es similar. Es muy probable que la capacidad cardio-protectora del aceite de oliva se relacione con otros factores de riesgo, algunos de los cuales son poco o completamente desconocidos. Las propiedades bioquímicas, biológicas y nutricionales del aceite de oliva son peculiares y permiten su aplicación en la nutrición clínica. Los beneficios del aceite de oliva se correlacionan con su acción sobre el metabolismo lipídico y el sistema cardiovascular. Un aumento moderado en la ingesta de grasa monoinsaturada (aceite de oliva), a expensas de los carbohidratos, es la recomendación en pacientes con diabetes e hipertrigliceridemia. En nutrición clínica, el aceite de oliva también tiene efectos beneficiosos en enfermedades relacionadas con respuestas inflamatorias y autoinmunes, como la artritis reumatoide. La composición química del aceite de oliva virgen extra contribuye a las necesidades diarias de ácidos grasos esenciales y de antioxidantes, especialmente en situaciones patológicas de deficiencia en vitamina E. Sin duda, el aceite de oliva (virgen extra) tiene máxima relevancia, por su contenido de ácido oleico (18:1 n -9) y compuestos minoritarios, en la nutrición clínica
    • …
    corecore