416 research outputs found
NNLO predictions for dijet production in diffractive DIS
Cross sections for inclusive dijet production in diffractive deep-inelastic
scattering are calculated for the first time in next-to-next-to-leading order
(NNLO) accuracy. These cross sections are compared to several HERA measurements
published by the H1 and ZEUS collaborations. We computed the total cross
sections, 49 single-differential and five double-differential distributions for
six HERA measurements. The NNLO corrections are found to be large and positive.
The normalization of the resulting predictions typically exceeds the data,
while the kinematical shape of the data is described better at NNLO than at
next-to-leading order (NLO). Our results use the currently available NLO
diffractive parton distributions, and the discrepancy in normalization
highlights the need for a consistent determination of these distributions at
NNLO accuracy
Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal
We report on the first experimental realization of a high-reflectivity cavity
mirror that solely consists of a single silicon crystal. Since no material was
added to the crystal, the urgent problem of 'coating thermal noise' that
currently limits classical as well as quantum measurements is avoided. Our
mirror is based on a surface nanostructure that creates a resonant surface
waveguide. In full agreement with a rigorous model we realized a reflectivity
of (99.79+/-0.01)% at a wavelength of 1.55 {\mu}m, and achieved a cavity
finesse of 2784. We anticipate that our achievement will open the avenue to
next generation high-precision experiments targeting fundamental questions of
physics.Comment: Phys. Rev. Lett., accepte
Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration
Michelson-type laser-interferometric gravitational-wave (GW) observatories
employ very high light powers as well as transmissively- coupled Fabry-Perot
arm resonators in order to realize high measurement sensitivities. Due to the
absorption in the transmissive optics, high powers lead to thermal lensing and
hence to thermal distortions of the laser beam profile, which sets a limit on
the maximal light power employable in GW observatories. Here, we propose and
realize a Michelson-type laser interferometer with arm resonators whose
coupling components are all-reflective second-order Littrow gratings. In
principle such gratings allow high finesse values of the resonators but avoid
bulk transmission of the laser light and thus the corresponding thermal beam
distortion. The gratings used have three diffraction orders, which leads to the
creation of a second signal port. We theoretically analyze the signal response
of the proposed topology and show that it is equivalent to a conventional
Michelson-type interferometer. In our proof-of-principle experiment we
generated phase-modulation signals inside the arm resonators and detected them
simultaneously at the two signal ports. The sum signal was shown to be
equivalent to a single-output-port Michelson interferometer with
transmissively-coupled arm cavities, taking into account optical loss. The
proposed and demonstrated topology is a possible approach for future
all-reflective GW observatory designs
Power-recycled michelson interferometer with a 50/50 grating beam splitter
We designed and fabricated an all-reflective 50/50 beam splitter based on a dielectric grating. This beam splitter was used to set up a power-recycled Michelson interferometer with a finesse of about FPR ≈ 880. Aspects of the diffractive beam splitter as well as of the interferometer design are discussed.DFG/SFB/TR
Jet production and measurements ofαsat HERA
Results on the measurements of the hadronic final state in e± p collisions by the H1 and ZEUS experiments at HERA are presented. These are measurements on the production of prompt photons in photoproduction, inclusive jet, dijet and trijet production in deep-inelatic scattering and on the search for QCD instantons. The jet production data is employed for the extraction of the strong coupling constant αs(MZ)
All-reflective coupling of two optical cavities with 3-port diffraction gratings
The shot-noise limited sensitivity of Michelson-type laser interferometers
with Fabry-Perot arm cavities can be increased by the so-called power-recycling
technique. In such a scheme the power-recycling cavity is optically coupled
with the interferometer's arm cavities. A problem arises because the central
coupling mirror transmits a rather high laser power and may show thermal
lensing, thermo-refractive noise and photo-thermo-refractive noise. Cryogenic
cooling of this mirror is also challenging, and thus thermal noise becomes a
general problem. Here, we theoretically investigate an all-reflective coupling
scheme of two optical cavities based on a 3-port diffraction grating. We show
that power-recycling of a high-finesse arm cavity is possible without
transmitting any laser power through a substrate material. The power splitting
ratio of the three output ports of the grating is, surprisingly, noncritical
Diffractively coupled Fabry-Perot resonator with power-recycling
We demonstrate the optical coupling of two cavities without light
transmission through a substrate. Compared to a conventional coupling
component, that is a partially transmissive mirror, an all-reflective coupler
avoids light absorption in the substrate and therefore associated thermal
problems, and even allows the use of opaque materials with possibly favourable
mechanical and thermal properties. Recently, the all-reflective coupling of two
cavities with a low-efficiency 3-port diffraction grating was theoretically
investigated. Such a grating has an additional (a third) port. However, it was
shown that the additional port does not necessarily decrease the bandwidth of
the coupled cavities. Such an all-reflective scheme for cavity coupling is of
interest in the field of gravitational wave detection. In such detectors light
that is resonantly enhanced inside the so-called power-recycling cavity is
coupled to (kilometre-scale) Fabry-Perot resonators representing the arms of a
Michelson interferometer. In order to achieve a high sensitivity over a broad
spectrum, the Fabry-Perot resonators need to have a high bandwidth for a given
(high) power build-up. We realized such an all-reflective coupling in a
table-top experiment. Our findings are in full agreement with the theoretical
model incorporating the characteristics of the 3-port grating used, and
therefore encourage the application of all-reflective cavity couplers in future
gravitational wave detectors
Jet Production at Low Momentum Transfer at HERA
New results on inclusive jets,dijet and trijet differential cross sections in neutral-current deep-inelastic scattering(DIS) using the H1 detector at HERA are presented[1]. TheDIS phase space of this measurement is given by the virtuality of the exchanged boson 5 5GeV. Differential cross sections are measured as a function of and for inclusive jets, and for dijet and trijet events as a function of and the average transverse momentum of the two jets with the highest transverse momentum in an event, . The data are compared to predictions in next-to-leading order perturbative QCD and overall reasonable agreement within the sizeable uncertainties of the predictions is found. The new data complement a previous H1 measurement at higher momentum transfer
- …
