3,263 research outputs found

    Aircraft aerodynamic prediction method for V/STOL transition including flow separation

    Get PDF
    A numerical procedure was developed for the aerodynamic force and moment analysis of V/STOL aircraft operating in the transition regime between hover and conventional forward flight. The trajectories, cross sectional area variations, and mass entrainment rates of the jets are calculated by the Adler-Baron Jet-in-Crossflow Program. The inviscid effects of the interaction between the jets and airframe on the aerodynamic properties are determined by use of the MCAIR 3-D Subsonic properties are determined by use of the MCAIR 3-D Subsonic Potential Flow Program, a surface panel method. In addition, the MCAIR 3-D Geometry influence Coefficient Program is used to calculate a matrix of partial derivatives that represent the rate of change of the inviscid aerodynamic properties with respect to arbitrary changes in the effective wing shape

    Ultrafast carrier dynamics in thin-films of the topological insulator Bi2Se3

    Get PDF
    Transient reflectivity measurements of thin films, ranging from 6 to 40 nm in thickness, of the topological insulator Bi2Se3 revealed a strong dependence of the carrier relaxation time on the film thickness. For thicker films the relaxation dynamics are similar to those of bulk Bi2Se3, where the contribution of the bulk insulating phase dominates over that of the surface metallic phase. The carrier relaxation time shortens with decreasing film thickness, reaching values comparable to those of noble metals. This effect may result from the hybridization of Dirac cone states at the opposite surfaces for the thinnest films

    Application of a Variable Path Length Repetitive Process Control for Direct Energy Deposition of Thin-Walled Structures

    Get PDF
    Direct Energy Deposition (DED) Additive Manufacturing is Well Suited to Fabricating Large Thin-Walled Metal Structures Such as Rocket Nozzles but Suffers from Layer-To-Layer Defect Propagation. Propagating Defects May Exhibit as Slumping or a Ripple in Bead Geometry. Recent Works Have Used Repetitive Process Control (RPC) Methods for Additive Manufacturing to Stabilize the Layer-Wise Defect Propagation, But These Methods Require Repetition of the Same Path. However, Typical Thin-Wall DED Applications, Sometimes Referred to as Vase Structures, Have Changing Paths with Each Layer Such as Expanding or Contracting Diameters and Changing Profiles. This Paper Presents an Extension to Optimal RPC that Uses a Geometric Mapping Method in the Learning Algorithm to Project Previous Layer Defects onto the Current Layer, Even When Paths Are of Differing Profile and Length. the Novel Method is Implemented on a DED System and Sample Parts with Layer-Changing Geometry Are Printed. the Experimental Results Demonstrate that the Method is Capable of Stabilizing the Layer-To-Layer Ripple Instability and Producing Parts of Good Quality

    Signatures of four-particle correlations associated with exciton-carrier interactions in coherent spectroscopy on bulk GaAs

    Get PDF
    Transient four-wave mixing studies of bulk GaAs under conditions of broad bandwidth excitation of primarily interband transitions have enabled four-particle correlations tied to degenerate (exciton-exciton) and nondegenerate (exciton-carrier) interactions to be studied. Real two-dimensional Fourier-transform spectroscopy (2DFTS) spectra reveal a complex response at the heavy-hole exciton emission energy that varies with the absorption energy, ranging from dispersive on the diagonal, through absorptive for low-energy interband transitions to dispersive with the opposite sign for interband transitions high above band gap. Simulations using a multilevel model augmented by many-body effects provide excellent agreement with the 2DFTS experiments and indicate that excitation-induced dephasing (EID) and excitation-induced shift (EIS) affect degenerate and nondegenerate interactions equivalently, with stronger exciton-carrier coupling relative to exciton-exciton coupling by approximately an order of magnitude. These simulations also indicate that EID effects are three times stronger than EIS in contributing to the coherent response of the semiconductor

    Clinical spirocercosis in a dog in the UK

    Get PDF
    A 2-year-old female neutered crossbreed dog was presented for evaluation of a 3-day history of haematemesis, melaena and hyporexia. The dog had been imported from a rescue centre in Hungary 4 months prior to presentation. Abdominal CT revealed the presence of a 3 cm×3 cm×4 cm diameter heterogenous intraluminal mass lesion in the gastric cardia, surrounding the ostium of the cardia and continuous with the distal oesophagus. The mass lesion was subsequently surgically resected. Histopathology of the gastric mass lesion was consistent with a Spirocerca lupi granuloma. The patient unfortunately developed a pyothorax and suffered cardiopulmonary arrest resulting in death 2 days postoperatively. To the authors’ knowledge, this is the first reported case of clinical spirocercosis reported in a dog in the UK

    Lidar technology measurements and technology: Report of panel

    Get PDF
    Lidar is ready to make an important contribution to tropospheric chemistry research with a variety of spaceborne measurements that complement the measurements from passive instruments. Lidar can now be considered for near-term and far-term space missions dealing with a number of scientifically important issues in tropospheric chemistry. The evolution in the lidar missions from space are addressed and details of these missions are given. The laser availability for space missions based upon the technical data is assessed

    X-Ray Diffraction on Mars: Scientific Discoveries Made by the CheMin Instrument

    Get PDF
    The Mars Science Laboratory Curiosity landed in Gale crater in August 2012 with the goal to identify and characterize habitable environments on Mars. Curiosity has been studying a series of sedimentary rocks primarily deposited in fluviolacustrine environments approximately 3.5 Ga. Minerals in the rocks and soils on Mars can help place further constraints on these ancient aqueous environments, including pH, salinity, and relative duration of liquid water. The Chemistry and Mineralogy (CheMin) X-ray diffraction and X-ray fluorescence instrument on Curiosity uses a Co X-ray source and charge-coupled device detector in transmission geometry to collect 2D Debye-Scherrer ring patterns of the less than 150 micron size fraction of drilled rock powders or scooped sediments. With an angular range of approximately 2.52deg 20 and a 20 resolution of approximately 0.3deg, mineral abundances can be quantified with a detection limit of approximately 1-2 wt. %. CheMin has returned quantitative mineral abundances from 16 mudstone, sandstone, and aeolian sand samples so far. The mineralogy of these samples is incredibly diverse, suggesting a variety of depositional and diagenetic environments and different source regions for the sediments. Results from CheMin have been essential for reconstructing the geologic history of Gale crater and addressing the question of habitability on ancient Mars
    • …
    corecore