43 research outputs found

    Array processing in cryoseismology: a comparison to network-based approaches at an Antarctic ice stream

    Get PDF
    Seismicity at glaciers, ice sheets, and ice shelves provides observational constraint on a number of glaciologi- cal processes. Detecting and locating this seismicity, specifi- cally icequakes, is a necessary first step in studying processes such as basal slip, crevassing, imaging ice fabric, and iceberg calving, for example. Most glacier deployments to date use conventional seismic networks, comprised of seismometers distributed over the entire area of interest. However, smaller- aperture seismic arrays can also be used, which are typically sensitive to seismicity distal from the array footprint and re- quire a smaller number of instruments. Here, we investigate the potential of arrays and array-processing methods to de- tect and locate subsurface microseismicity at glaciers, bench- marking performance against conventional seismic-network- based methods for an example at an Antarctic ice stream. We also provide an array-processing recipe for body-wave cryoseismology applications. Results from an array and a network deployed at Rutford Ice Stream, Antarctica, show that arrays and networks both have strengths and weaknesses. Arrays can detect icequakes from further distances, whereas networks outperform arrays in more comprehensive studies of a particular process due to greater hypocentral constraint within the network extent. We also gain new insights into seismic behaviour at the Rutford Ice Stream. The array de- tects basal icequakes in what was previously interpreted to be an aseismic region of the bed, as well as new icequake observations downstream and at the ice stream shear mar- gins, where it would be challenging to deploy instruments. Finally, we make some practical recommendations for future array deployments at glaciers

    Seismic Noise Interferometry and Distributed Acoustic Sensing (DAS): Inverting for the Firn Layer S ā€Velocity Structure on Rutford Ice Stream, Antarctica

    Get PDF
    Firn densification profiles are an important parameter for ice-sheet mass balance and palaeoclimate studies. One conventional method of investigating firn profiles is using seismic refraction surveys, but these are difficult to upscale to large-area measurements. Distributed acoustic sensing (DAS) presents an opportunity for large-scale seismic measurements of firn with dense spatial sampling and easy deployment, especially when seismic noise is used. We study the feasibility of seismic noise interferometry (SI) on DAS data for characterizing the firn layer at the Rutford Ice Stream, West Antarctica. Dominant seismic energy appears to come from anthropogenic noise and shear-margin crevasses. The DAS cross-correlation interferometry yields noisy Rayleigh wave signals. To overcome this, we present two strategies for cross-correlations: (a) hybrid instrumentsā€”correlating a geophone with DAS, and (b) stacking of selected cross-correlation panels picked in the tau-p domain. These approaches are validated with results derived from an active survey. Using the retrieved Rayleigh wave dispersion curve, we inverted for a high-resolution 1D S-wave velocity profile down to a depth of 100 m. The profile shows a ā€œkinkā€ (velocity gradient inflection) at āˆ¼12 m depth, resulting from a change of compaction mechanism. A triangular DAS array is used to investigate directional variation in velocity, which shows no evident variations thus suggesting a lack of azimuthal anisotropy in the firn. Our results demonstrate the potential of using DAS and SI to image the near-surface and present a new approach to derive S-velocity profiles from surface wave inversion in firn studies

    Automated detection of basal icequakes and discrimination from surface crevassing

    Get PDF
    Icequakes at or near the bed of a glacier have the potential to allow us to investigate the interaction of ice with the underlying till or bedrock. Understanding this interaction is important for studying basal sliding of glaciers and ice streams, a critical process in ice dynamics models used to constrain future sea level rise projections. However, seismic observations on glaciers can be dominated by seismic energy from surface crevassing. We present a method of automatically detecting basal icequakes and discriminating them from surface crevassing, comparing this method to a commonly used spectrum-based method of detecting icequakes. We use data from Skeidararjo Ģˆkull, an outlet glacier of the Vatnaj Ģˆokull Ice Cap, South-East Iceland, to demonstrate that our method outperforms the commonly used spectrum-based method. Our method detects a higher number of basal icequakes, has a lower rate of incorrectly identifying crevassing as basal icequakes and detects an additional, spatially independent basal icequake cluster. We also show independently that the icequakes do not originate from near the glacier surface. We conclude that the method described here is more effective than currently implemented methods for detecting and discriminating basal icequakes from surface crevassing

    Contrasting hydrological controls on bed properties during the acceleration of Pine Island Glacier, West Antarctica

    Get PDF
    In the Amundsen sector of West Antarctica, the flow of glaciers accelerates when intrusion of warm ocean water onto the continental shelf induces strong melting beneath ice shelves and thinning near the glacierā€™s grounding lines. Projecting the future of these glaciers is, however, hindered by a poor understanding of the dynamical processes that may exacerbate, or on the contrary modulate, the inland ice sheet response. This study seeks to investigate processes occurring at the base of Pine Island Glacier through numerical inversions of surface velocities observed in 1996 and 2014, a period of time during which the glacier accelerated significantly. The outputs show that substantial changes took place in the basal environment, which we interpreted with models of undrained subglacial till and hydrological routing. The annual basal melt production increased by 25% on average. Basal drag weakened by 15% over nearly two thirds of the region of accelerated flow, largely due to the direct assimilation of locally-produced basal meltwater into the underlying subglacial sediment. In contrast, regions of increased drag are found to follow several of the glacierā€™s shear margins, and furthermore to coincide with inferred hydrological pathways. We interpret this basal strengthening as signature of an efficient hydrological system, where low-pressure water channels have reduced the surrounding basal water pressure. These are the first identified stabilization mechanisms to have developed alongside Pine Island ice flow acceleration. Indeed, these processes could become more significant with increased meltwater availability and may limit the glacierā€™s response to perturbation near its grounding line.This work was funded by the Natural Environment Research Council (NERC) iSTAR programme (NE/J005800/1, NE/J005738 and NE/J005754/1) and the Isaac Newton Trust

    Constraining recent ice flow history at Korff Ice Rise, West Antarctica, using radar and seismic measurements of ice fabric

    Get PDF
    The crystal orientation fabric of ice reflects its flow history, information which is required to better constrain projections of future ice sheet behavior. Here we present a novel combination of polarimetric phaseā€sensitive radar and seismic anisotropy measurements to provide independent and consistent constraints on ice fabric at Korff Ice Rise, within the Weddell Sea sector of West Antarctica. The nature and depth distribution of fabric in the ice column is constrained using the azimuthal variation in (1) the received power anomaly and phase difference of polarimetric vertical radar soundings and (2) seismic velocities and shear wave splitting measurements. Radar and seismic observations are modeled separately to determine the nature and strength of fabric within the ice column. Both methods indicate ice fabric above 200ā€m depth which is consistent with presentā€day iceā€divide flow. However, both measurements also indicate an oblique girdle fabric below 230ā€m depth within the ice column, inconsistent with steady state divide flow. Our interpretation is that this deeper fabric is a remnant fabric from a previous episode of flow, which is currently being overwritten by ongoing fabric development associated with the presentā€day flow regime. The preexisting fabric is consistent with ice flow from the south prior to iceā€divide formation, in agreement with models of Holocene ice sheet evolution. These findings apply new constraints to the flow history at Korff Ice Rise prior to divide formation and demonstrate the capacity of radar and seismic measurements to map fabric and thus constrain past ice flow

    Downhole distributed acoustic seismic profiling at Skytrain Ice Rise, West Antarctica

    Get PDF
    Antarctic ice sheet history is imprinted in the structure and fabric of the ice column. At ice rises, the signature of ice flow history is preserved due to the low strain rates inherent at these independent ice flow centres. We present results from a distributed acoustic sensing (DAS) experiment at Skytrain Ice Rise in the Weddell Sea sector of West Antarctica, aimed at delineating the englacial fabric to improve our understanding of ice sheet history in the region. This pilot experiment demonstrates the feasibility of an innovative technique to delineate ice rise structure. Both direct and reflected P- and S-wave energy, as well as surface wave energy, are observed using a range of source offsets, i.e. a walkaway vertical seismic profile, recorded using fibre optic cable. Significant noise, which results from the cable hanging untethered in the borehole, is modelled and suppressed at the processing stage. At greater depth where the cable is suspended in drilling fluid, seismic interval velocities and attenuation are measured. Vertical P-wave velocities are high (VINT=3984Ā±218ā€‰mā€‰sāˆ’1) and consistent with a strong vertical cluster fabric. Seismic attenuation is high (QINT=75Ā±12) and inconsistent with previous observations in ice sheets over this temperature range. The signal level is too low, and the noise level too high, to undertake analysis of englacial fabric variability. However, modelling of P- and S-wave travel times and amplitudes with a range of fabric geometries, combined with these measurements, demonstrates the capacity of the DAS method to discriminate englacial fabric distribution. From this pilot study we make a number of recommendations for future experiments aimed at quantifying englacial fabric to improve our understanding of recent ice sheet history

    Sensitivity of melting, freezing and marine ice beneath Larsen C Ice Shelf to changes in ocean forcing

    Get PDF
    Observations of surface lowering on Larsen C Ice Shelf (LCIS), Antarctica, have prompted concern about its stability. In this study, an ocean model is used to investigate the extent to which changes in ocean forcing may have influenced ice loss and the distribution of stabilising marine ice beneath LCIS. The model uses a new bathymetry, containing a southern seabed trough discovered using seismic observations. The modelled extent of marine ice, thought to stabilise LCIS, is in good agreement with observations. Experiments applying idealised ocean warming yield an increase in melting over the southern trough. This is inconsistent with lowering observed in northern LCIS, suggesting oceanic forcing is not responsible for that signal. The marine ice extent and thickness reduces significantly under ocean warming, implying a high sensitivity of LCIS stability to changes in ocean forcing. This result could have wide implications for other cold-water ice shelves around Antarctica

    Measuring seismic attenuation in polar firn: method and application to Korff Ice Rise, West Antarctica

    Get PDF
    We present seismic measurements of the firn column at Korff Ice Rise, West Antarctica, including measurements of compressional-wave velocity and attenuation. We describe a modified spectral-ratio method of measuring the seismic quality factor (Q) based on analysis of diving waves, which, combined with a stochastic method of error propagation, enables us to characterise the attenuative structure of firn in greater detail than has previously been possible. Q increases from 56 Ā± 23 in the uppermost 12 m to 570 Ā± 450 between 55 and 77 m depth. We corroborate our method with consistent measurements obtained via primary reflection, multiple, source ghost, and critically refracted waves. Using the primary reflection and its ghost, we find Q = 53 Ā± 20 in the uppermost 20 m of firn. From the critical refraction, we find Q = 640 Ā± 400 at 90 m depth. Our method aids the understanding of the seismic structure of firn and benefits characterisation of deeper glaciological targets, providing an alternative means of correcting seismic reflection amplitudes in cases where conventional methods of Q correction may be impossible
    corecore