4,927 research outputs found
The Generation of Fullerenes
We describe an efficient new algorithm for the generation of fullerenes. Our
implementation of this algorithm is more than 3.5 times faster than the
previously fastest generator for fullerenes -- fullgen -- and the first program
since fullgen to be useful for more than 100 vertices. We also note a
programming error in fullgen that caused problems for 136 or more vertices. We
tabulate the numbers of fullerenes and IPR fullerenes up to 400 vertices. We
also check up to 316 vertices a conjecture of Barnette that cubic planar graphs
with maximum face size 6 are hamiltonian and verify that the smallest
counterexample to the spiral conjecture has 380 vertices.Comment: 21 pages; added a not
Transient Emission From Dissipative Fronts in Magnetized, Relativistic Outflows. II. Synchrotron Flares
The time dependent synchrotron emission from relativistic jets, and the
relation between the synchrotron and ERC emission is considered within the
framework of the radiative front model. The timescale and profile of the
optically thin emission are shown to be determined, in this model, by the shock
formation radius, the thickness of expelled fluid slab and the variation of the
front's parameters due to its transverse expansion. For a range of reasonable
conditions, a variety of flare shapes can be produced, varying from roughly
symmetric with exponential rises and decays, as often seen in blazars, to
highly asymmetric with a fast rise and a much slower, power law decay, as seen
in GRB afterglows. The onset, duration, and fluence of low-frequency (below the
initial turnover frequency) and hard gamma-ray (above the initial gamma-spheric
energy) outbursts are limited by opacity effects; the emission at these
energies is quite generally delayed and, in the case of sufficiently short
length outbursts, severely attenuated. The observational consequences are
discussed. One distinctive prediction of this model is that in a single,
powerful source, the upper cutoff of the gamma-ray spectrum should be
correlated with the timescale of the outburst and with the amplitude of
variations at long wavelengths (typically radio to millimeter).Comment: AAS LaTex, 14 pgs, accepted to A
with a production
The cross section of
process with a complete set of tree diagrams, 232 diagrams in the unitary
gauge, was calculated at the energy range of = 340 - 500 GeV by
using GRACE system. A main contribution to the cross section comes from
production, where and decay into and
, respectively. It was found that the
interference between the diagrams with production and those with
single- through pair production amounts to 10% at the
threshold energy region. In the energy region above twice of the top quark
mass, more than 95% of the cross section comes from the diagrams.Comment: 17 pages, 8 PostScript figures, LateX; To appear in Phys. Lett.
Thermal X-ray emission from shocked ejecta in Type Ia Supernova Remnants. Prospects for explosion mechanism identification
The explosion mechanism behind Type Ia supernovae is a matter of continuing
debate. The diverse attempts to identify or at least constrain the physical
processes involved in the explosion have been only partially successful so far.
In this paper we propose to use the thermal X-ray emission from young supernova
remnants originated in Type Ia events to extract relevant information
concerning the explosions themselves. We have produced a grid of thermonuclear
supernova models representative of the paradigms currently under debate: pure
deflagrations, delayed detonations, pulsating delayed detonations and
sub-Chandrasekhar explosions, using their density and chemical composition
profiles to simulate the interaction with the surrounding ambient medium and
the ensuing plasma heating, non-equilibrium ionization and thermal X-ray
emission of the ejecta. Key observational parameters such as electron
temperatures, emission measures and ionization time scales are presented and
discussed. We find that not only is it possible to identify the explosion
mechanism from the spectra of young Type Ia Supernova Remnants, it is in fact
necessary to take the detailed ejecta structure into account if such spectra
are to be modeled in a self-consistent way. Neither element line flux ratios
nor element emission measures are good estimates of the true ratios of ejected
masses, with differences of as much as two or three orders of magnitude for a
given model. Comparison with observations of the Tycho SNR suggests a delayed
detonation as the most probable explosion mechanism. Line strengths, line
ratios, and the centroid of the Fe Kalpha line are reasonably well reproduced
by a model of this kind.Comment: 11 pages, 8 figures (5 of them color), accepted for publication by
the Ap
Exhaustive generation of -critical -free graphs
We describe an algorithm for generating all -critical -free
graphs, based on a method of Ho\`{a}ng et al. Using this algorithm, we prove
that there are only finitely many -critical -free graphs, for
both and . We also show that there are only finitely many
-critical graphs -free graphs. For each case of these cases we
also give the complete lists of critical graphs and vertex-critical graphs.
These results generalize previous work by Hell and Huang, and yield certifying
algorithms for the -colorability problem in the respective classes.
Moreover, we prove that for every , the class of 4-critical planar
-free graphs is finite. We also determine all 27 4-critical planar
-free graphs.
We also prove that every -free graph of girth at least five is
3-colorable, and determine the smallest 4-chromatic -free graph of
girth five. Moreover, we show that every -free graph of girth at least
six and every -free graph of girth at least seven is 3-colorable. This
strengthens results of Golovach et al.Comment: 17 pages, improved girth results. arXiv admin note: text overlap with
arXiv:1504.0697
Stringy multifield quintessence and the Swampland
We consider quintessence models within 4D effective descriptions of gravity coupled to two scalar fields. These theories are known to give rise to viable models of late-time cosmic acceleration without any need for flat potentials, and so they are potentially in agreement with the dS Swampland conjecture. In this paper we investigate the possibility of consistently embedding such constructions in string theory. We identify situations where the quintessence fields are either closed string universal moduli or non-universal moduli such as blow-up modes. We generically show that no trajectories compatible with today’s cosmological parameters exist, if one starts from matter-dominated initial conditions. It is worth remarking that universal trajectories compatible with observations do appear, provided that the starting point at early times is a phase of kinetic domination. However, justifying this choice of initial conditions on solid grounds is far from easy. We conclude by studying Q-ball formation in this class of models and discuss constraints coming from Q-ball safety in all cases analyzed here
Investigation of the Spin-Peierls transition in CuGeO_3 by Raman scattering
Raman experiments on the spin-Peierls compound CuGeO and the substituted
(Cu,Zn)GeO and Cu(Ge,Ga)O compounds were
performed in order to investigate the response of specific magnetic excitations
of the one-dimensional spin-1/2 chain to spin anisotropies and
substitution-induced disorder. In pure CuGeO, in addition to normal phonon
scattering which is not affected at all by the spin-Peierls transition, four
types of magnetic scattering features were observed. Below T=14 K a
singlet-triplet excitation at 30 cm, two-magnon scattering from 30 to
227 cm and folded phonon modes at 369 and 819 cm were identified.
They were assigned by their temperature dependence and lineshape. For
temperatures between the spin-Peierls transition T and approximately 100
K a broad intensity maximum centered at 300 cm is observed.Comment: 7 pages, LaTex2e, including 3 figures (eps) to be published in
Physica B (1996
- …