252 research outputs found

    The 492 GHz emission of Sgr A* constrained by ALMA

    Full text link
    We report linearly polarized continuum emission properties of Sgr A* at \sim492 GHz, based on the Atacama Large Millimeter Array (ALMA) observations. We used the observations of the likely unpolarized continuum emission of Titan, and the observations of C\textsc{i} line emission, to gauge the degree of spurious polarization. The Stokes I flux of 3.6±\pm0.72 Jy during our run is consistent with extrapolations from the previous, lower frequency observations. We found that the continuum emission of Sgr A* at \sim492 GHz shows large amplitude differences between the XX and the YY correlations. The observed intensity ratio between the XX and YY correlations as a function of parallactic angle may be explained by a constant polarization position angle of \sim158^{\circ}±\pm3^{\circ}. The fitted polarization percentage of Sgr A* during our observational period is 14\%±\pm1.2\%. The calibrator quasar J1744-3116 we observed at the same night can be fitted to Stokes I = 252 mJy, with 7.9\%±\pm0.9\% polarization in position angle P.A. = 4.1^{\circ}±\pm4.2^{\circ}. The observed polarization percentage and polarization position angle in the present work appear consistent with those expected from longer wavelength observations in the period of 1999-2005. In particular, the polarization position angle at 492 GHz, expected from the previously fitted 167^{\circ}±\pm7^{\circ} intrinsic polarization position angle and (-5.6±\pm0.7)×\times105^{5} rotation measure, is 1558+9^{+9}_{-8}, which is consistent with our new measurement of polarization position angle within 1σ\sigma. The polarization percentage and the polarization position angle may be varying over the period of our ALMA 12m Array observations, which demands further investigation with future polarization observations.Comment: 10 pages, 6 figures, 1st referee report received and revise

    Conquering the Solar System with CubeSat Technology – First Results of CubeSat Hardware Beyond Low Earth Orbit

    Get PDF
    This paper sets out to show the in-flight results of The Netherlands-China Low-Frequency Explorer (NCLE) – one of the first times CubeSat hardware has left low Earth Orbit. The Netherlands-China Low-Frequency Explorer (NCLE), is a low-frequency payload which is part of the Chinese Chang’e 4 mission. The NCLE instrument consists of three 5-meter long monopole antennas mounted on the Queqiao satellite and will be measuring in the 80 kHz - 80 MHz radio frequency range. The instrument is designed to address a multitude of high-profile science cases, but predominantly NCLE will open up the low-frequency regime for radio astronomy and will prepare for the ground-breaking observations of the 21-cm line emission from the Dark Ages and the Cosmic Dawn, considered to be the holy grail of cosmology. The design of the instrument began in May 2016, with a launch scheduled May 2018. This left only 2 years to develop, build and test the instrument. Given the short development time the design is based on COTS and space qualified components as much as possible, and a design and model philosophy common to nano-satellites was adopted. Even so, special care had to be taken as one of the main challenges of this mission is EMC. This is an area which is only marginally considered during a typical CubeSat project and required a different approach. Following the delivery in March 2018, less than 2 years after the project started, the instruments was successful launched in the 21st of May 2018 and saw its first return of telemetry January 2019. In this paper, the design of the instrument will be covered, as well as the first in flight results which were obtained. These results indicate NCLE is performing admirably after having spent over a year in interplanetary space. The NCLE instrument represents one of the first times the CubeSat methodology and hardware left Low Earth Orbit. This, together with the strict EMC requirements have resulted in CubeSat hardware which can be used in future interplanetary missions. The promising results give strong confidence in the technology and enables new mission opportunities which could not be served by CubeSats in the past. This will fuel the next phase of the CubeSat revolution where they will venture out into interplanetary space in support of bigger missions

    Angiotensin II-inhibition:effect on Alzheimer's pathology in the aged triple transgenic mouse

    Get PDF
    ontext. Radio and mm-wavelength observations of Sagittarius A* (Sgr A*), the radio source associated with the supermassive black hole at the center of our Galaxy, show that it behaves as a partially self-absorbed synchrotron-emitting source. The measured size of Sgr A* shows that the mm-wavelength emission comes from a small region and consists of the inner accretion flow and a possible collimated outflow. Existing observations of Sgr A* have revealed a time lag between light curves at 43 GHz and 22 GHz, which is consistent with a rapidly expanding plasma flow and supports the presence of a collimated outflow from the environment of an accreting black hole. Aims. Here we wish to measure simultaneous frequency-dependent time lags in the light curves of Sgr A* across a broad frequency range to constrain direction and speed of the radio-emitting plasma in the vicinity of the black hole. Methods. Light curves of Sgr A* were taken in May 2012 using ALMA at 100 GHz using the VLA at 48, 39, 37, 27, 25.5, and 19 GHz. As a result of elevation limits and the longitude difference between the stations, the usable overlap in the light curves is approximately four hours. Although Sgr A* was in a relatively quiet phase, the high sensitivity of ALMA and the VLA allowed us to detect and fit maxima of an observed minor flare where flux density varied by ~10%. Results. The fitted times of flux density maxima at frequencies from 100 GHz to 19 GHz, as well as a cross-correlation analysis, reveal a simple frequency-dependent time lag relation where maxima at higher frequencies lead those at lower frequencies. Taking the observed size-frequency relation of Sgr A* into account, these time lags suggest a moderately relativistic (lower estimates: 0.5c for two-sided, 0.77c for one-sided) collimated outflow

    ALMA Observations of the Terahertz Spectrum of Sagittarius A*

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations at 233, 678, and 870 GHz of the Galactic Center black hole, Sagittarius A*. These observations reveal a flat spectrum over this frequency range with spectral index α ≈ −0.3, where the flux density S ∝ ν α . We model the submillimeter and far-infrared spectrum with a one-zone synchrotron model of thermal electrons. We infer electron densities n = (2–5) × 106 cm−3, electron temperatures T e = (1–3) × 1011 K, and magnetic field strength B = 10–50 G. The parameter range can be further constrained using the observed quiescent X-ray luminosity. The flat submillimeter spectrum results in a high electron temperature and implies that the emitting electrons are efficiently heated. We also find that the emission is most likely optically thin at 233 GHz. These results indicate that millimeter and submillimeter wavelength very long baseline interferometry of Sgr A* including those of the Event Horizon Telescope should see a transparent emission region down to event horizon scales.Alexander von Humboldt foundation; NWO VICI grant [639.043.513]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Detection of intrinsic source structure at ~3 Schwarzschild radii with Millimeter-VLBI observations of SAGITTARIUS A*

    Get PDF
    We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional {\it uv} coverage in the N-S direction, and leads to a spatial resolution of \sim30 μ\muas (\sim3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of \sim4-13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of \sim3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow a more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.Comment: 11 pages, 5 figures, accepted to Ap

    Selected 'Starter kit' energy system modelling data for selected countries in Africa, East Asia, and South America (#CCG, 2021)

    Get PDF
    Energy system modeling can be used to develop internally-consistent quantified scenarios. These provide key insights needed to mobilise finance, understand market development, infrastructure deployment and the associated role of institutions, and generally support improved policymaking. However, access to data is often a barrier to starting energy system modeling, especially in developing countries, thereby causing delays to decision making. Therefore, this article provides data that can be used to create a simple zero-order energy system model for a range of developing countries in Africa, East Asia, and South America, which can act as a starting point for further model development and scenario analysis. The data are collected entirely from publicly available and accessible sources, including the websites and databases of international organisations, journal articles, and existing modeling studies. This means that the datasets can be easily updated based on the latest available information or more detailed and accurate local data. As an example, these data were also used to calibrate a simple energy system model for Kenya using the Open Source Energy Modeling System (OSeMOSYS) and three stylized scenarios (Fossil Future, Least Cost and Net Zero by 2050) for 2020–2050. The assumptions used and the results of these scenarios are presented in the appendix as an illustrative example of what can be done with these data. This simple model can be adapted and further developed by in-country analysts and academics, providing a platform for future work
    corecore