Abstract

We report linearly polarized continuum emission properties of Sgr A* at \sim492 GHz, based on the Atacama Large Millimeter Array (ALMA) observations. We used the observations of the likely unpolarized continuum emission of Titan, and the observations of C\textsc{i} line emission, to gauge the degree of spurious polarization. The Stokes I flux of 3.6±\pm0.72 Jy during our run is consistent with extrapolations from the previous, lower frequency observations. We found that the continuum emission of Sgr A* at \sim492 GHz shows large amplitude differences between the XX and the YY correlations. The observed intensity ratio between the XX and YY correlations as a function of parallactic angle may be explained by a constant polarization position angle of \sim158^{\circ}±\pm3^{\circ}. The fitted polarization percentage of Sgr A* during our observational period is 14\%±\pm1.2\%. The calibrator quasar J1744-3116 we observed at the same night can be fitted to Stokes I = 252 mJy, with 7.9\%±\pm0.9\% polarization in position angle P.A. = 4.1^{\circ}±\pm4.2^{\circ}. The observed polarization percentage and polarization position angle in the present work appear consistent with those expected from longer wavelength observations in the period of 1999-2005. In particular, the polarization position angle at 492 GHz, expected from the previously fitted 167^{\circ}±\pm7^{\circ} intrinsic polarization position angle and (-5.6±\pm0.7)×\times105^{5} rotation measure, is 1558+9^{+9}_{-8}, which is consistent with our new measurement of polarization position angle within 1σ\sigma. The polarization percentage and the polarization position angle may be varying over the period of our ALMA 12m Array observations, which demands further investigation with future polarization observations.Comment: 10 pages, 6 figures, 1st referee report received and revise

    Similar works