10,600 research outputs found
Indium phosphide solar cells: status and prospects for use in space
The current status of indium phosphide cell research is reviewed and state of the art efficiencies compared to those of GaAs and Si. It is shown that the radiation resistance of InP cells is superior to that of either GaAs or Si under 1 MeV electron and 10 MeV proton irradiation. Using lightweight blanket technology, a SEP array structure and projected cell efficiencies, array specific powers are obtained for all three cell types. Array performance is calculated as a function of time in orbit. The results indicate that arrays using InP cells can outperform those using GaAs or Si in orbits where radiation is a significant cell degradation factor. It is concluded that InP solar cells are excellent prospects for future use in the space radiation environment
Formation and characterization of inorganic membranes from zeolite-silica microcomposites
Small crystals of zeolites (500-1000 nm) with two- and three-dimensional channel
systems (faujasite and ZSM-5 structures) were embedded in amorphous thin films derived
from TEOS hydrolyzed in alcoholic solution. Scanning electron microscopy studies show that the
zeolites can be quite evenly dispersed in the membrane, resulting in single layers of zeolite
crystals protruding out of the amorphous matrix. In situ FT-IR studies with a series of probe
molecules revealed that in most membranes the zeolites were 100% accessible from the gas
phase. The membranes excluded molecules which are larger than the pore openings of the
zeolite embedded in the composite
Uniformity of the pseudomagnetic field in strained graphene
We present a study on the uniformity of the pseudomagnetic field in graphene
as a function of the relative orientation between the graphene lattice and
straining directions. For this, we strained a regular micron-sized graphene
hexagon by deforming it symmetrically by displacing three of its edges. By
simulations, we found that the pseudomagnetic field is strongest if the strain
is applied perpendicular to the armchair direction of graphene. For a hexagon
with a side length of 1 m, the pseudomagnetic field has a maximum of
1.2 T for an applied strain of 3.5% and it is uniform (variance %) within
a circle with a diameter of  nm. This diameter is on the order of the
typical diameter of the laser spot in a state-of-the-art confocal Raman
spectroscopy setup, which suggests that observing the pseudomagnetic field in
measurements of shifted magneto-phonon resonance is feasible.Comment: 7 pages, 5 figure
Oxometalate-glass composites and thin films
New glass-composites with ion exchange properties have been developed.
Ammonium 12-molybdophosphate (AMP) (ΝΗ4)3ΡΜοΐ2θ4ο, and ammonium 12-tungstophosphate (AWP) (Nh4)3PW12O40, known for their ion exchange
capabilities, are included either in preformed aerogels with defined pore size, or are
added to sol-gel mixtures during the process of gel formation. Characterization is
carried out by FTIR, Raman and EXAFS spectroscopy. Ion exchange capacities for the
oxometalate precursors are determined for silver and rubidium and are compared to
those of the glass composites. Glass composites show high ion exchange capacity, but
some portion of the metalate complexes leaches from the glass during the procedure.
This is in contrast to thin composite films, which have almost no porosity and do not
show loss of metalate. EXAFS spectroscopy demostrates that the oxometalate
microstructure is maintained in glass composites and that rubidium ions after ion
exchange in glasses occupy similar cation positions as in the precursor compounds
Advanced photovoltaic power system technology for lunar base applications
The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies
A possible radiation-resistant solar cell geometry using superlattices
A solar cell structure is proposed which uses a GaAs nipi doping superlattice. An important feature of this structure is that photogenerated minority carriers are very quickly collected in a time shorter than bulk lifetime in the fairly heavily doped n and p layers and these carriers are then transported parallel to the superlattice layers to selective ohmic contacts. Assuming that these already-separated carriers have very long recombination lifetimes, due to their across an indirect bandgap in real space, it is argued that the proposed structure may exhibit superior radiation tolerance along with reasonably high beginning-of-life efficiency
Thermal annealing of GaAs concentrator solar cells
Isochronal and isothermal annealing tests were performed on GaAs concentrator cells which were irradiated with electrons of various energies to fluences up to 1 x 10(exp 16) e/sq cm. The results include: (1) For cells irradiated with electrons from 0.7 to 2.3 MeV, recovery decreases with increasing electron energy. (2) As determined by the un-annealed fractions, isothermal and isochronal annealing produce the same recovery. Also, cells irradiated to 3 x 10(exp 15) or 1 x 10(exp 16) e/sq cm recover to similar un-annealed fractions. (3) Some significant annealing is being seen at 150 C although very long times are required
GaAs and 3-5 compound solar cells status and prospects for use in space
Gallium arsenide solar cells equal or supass the best silicon solar cells in efficiency, radiation resistance, annealability, and in the capability to produce usable power output at elevated temperatures. NASA has been involved in a long range research and development program to capitalize on these manifold advantages, and to explore alternative III-V compounds for additional potential improvements. The current status and future prospects for research and development in this area are reviewed and the progress being made toward development of GaAs cells suitable for variety of space missions is discussed. Cell types under various stages of development include n(+)/p shallow homojunction thin film GaAs cells, x100 concentration ratio p/n and n/p GaAs small area concentrator cells, mechanically-stacked, two-junction tandem cells, and three-junction monolithic cascade cells, among various other cell types
Nonlocal orbital magnetism of 3d adatoms deposited on the Pt(111) surface
The orbital magnetic moment is still surprisingly not well understood, in
contrast to the spin part. Its description in finite systems, such as isolated
atoms and molecules, is not problematic, but it was only recently that a
rigorous picture was provided for extended systems. Here we focus on an
intermediate class of systems: magnetic adatoms placed on a non-magnetic
surface. We show that the essential quantity is the ground-state charge current
density, in the presence of spin-orbit coupling, and set out its
first-principles description. This is illustrated by studying the magnetism of
the surface Pt electrons, induced by the presence of Cr, Mn, Fe, Co and Ni
adatoms. A physically appealing partition of the charge current is introduced.
This reveals that there is an important nonlocal contribution to the orbital
moments of the Pt atoms, extending three times as far from each magnetic adatom
as the induced spin and local orbital moments. We find that it is as sizable as
the latter, and attribute its origin to a spin-orbital susceptibility of the Pt
surface, different from the one responsible for the formation of the local
orbital moments.Comment: 6 pages, 3 figures, submitte
Advanced photovoltaic power system technology for lunar base applications
Advanced photovoltaic/electrochemical (batteries or regenerative fuel cells for storage) power system options for a lunar base are discussed and compared. Estimated system masses are compared with those projected for the SP-100 nuclear system. The results of the comparison are quantified in terms of the mass saved in a scenario which assembles the initial base elements in Low Earth Orbit (LEO) and launches from there to the lunar surface. A brief summary is given of advances in photovoltaic/electrochemical power system technologies currently under development in the NASA/OAST program. A description of the planned focussed technology program for surface power in the new Pathfinder initiative is also provided
- …
