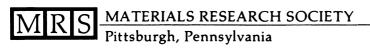
Better Ceramics Through Chemistry III


Symposium held April 5-8, 1988, Reno, Nevada, U.S.A.

EDITORS:

C. Jeffrey Brinker Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

David E. Clark University of Florida, Gainesville, Florida, U.S.A.

Donald R. Ulrich Air Force Office of Scientific Research, Washington, D.C., U.S.A.

1988

Contents

PREFACE	xν
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS	xvi
PART I - Sol-Gel Chemistry I: Silicates	
* MOLECULAR GROWTH PATHWAYS IN SILICA SOL-GEL POLYMERIZATION W. G. Klemperer and S. D. Ramamurthi	1
* STRUCTURAL CHARACTERIZATION OF POLYSILICATE INTERMEDIATES FORMED DURING SOL-GEL POLYMERIZATION W. G. Klemperer, V. V. Mainz, S. D. Ramamurthi and F. S. Rosenberg	15
* SOL-GEL KINETICS: ²⁹ Si NMR AND A STATISTICAL REACTION MODEL R. A. Assink and B. D. Kay	25
KINETICS STUDY OF THE ACIDIC CATALYZED POLYMERIZATION OF TETRAETHOXYSILANE BY ²⁹ SI NMR J-C. Pouxviel and J. P. Boilot	37
BRANCHING THEORY IN SOL-GEL PROCESSING N. A. Peppas, A. B. Scranton, A. H. Tsou and D. E. Edwards	43
* NMR CHARACTERIZATION OF PRECURSORS TO CHEMICALLY DERIVED CERAMICS J. D. Basil and C-C. Lin	49
* STUDIES OF THE HYDROLYSIS AND POLYMERIZATION OF SILICON ALKOXIDES IN BASIC ALCOHOL SOLUTIONS G. H. Bogush, G. L. Dickstein, P. Lee (K. C.) and C. F. Zukoski, IV	57
THE INFLUENCE OF ALKALI METAL HYDROXIDES ON SILICA CONDENSATION RATES: THE ROLE OF ION PAIRING A. V. McCormick, A. T. Bell and C. J. Radke	67
RHEOLOGICAL MONITORING OF GELATION KINETICS OF SILICA SOLS S. A. Khan, E. M. Rabinovich, R. K. Prud'homme, M. J. Sammon and N. J. Kopylov	73
PART II - Sol-Gel Chemistry II: Non-Silicates	
* POLYMETALLIC ALKOXIDES - PRECURSORS FOR CERAMICS R. C. Mehrotra	81
* SYNTHESIS AND CHARACTERIZATION OF VANADIUM OXIDE GELS FROM ALKOXY-VANADATE PRECURSORS C. Sanchez, M. Nabavi and F. Taulelle	93
RAMAN AND NMR STUDIES OF HYDROUS SODIUM TITANATES B. C. Bunker, C.H.F. Peden, D. R. Tallant, S. L. Martinez and G. L. Turner	105
ELECTROCHEMICAL SYNTHESIS OF ZIRCONIA J. A. Switzer and R. J. Phillips	111

SOL-TO-GEL TRANSITION IN REVERSED MICELLES MICROEMULSION A NEW ROUTE TO PRODUCE MONOLITHIC METAL-ORGANIC DERIVI GELS	ED
C. Guizard, M. Stitou, A. Larbot, L. Cot and J. Rouviere	
GROWTH AND STRUCTURE OF ALUMINO-SILICATE POLYMERS J. P. Boilot, J-C. Pouxviel, A. Dauger and A. Wright	121
ORGANOMETALLIC APPROACHES TO CERAMIC MATERIALS D. C. Hrncir	127
INVESTIGATION OF THE EFFECT OF DIMETHYLFORMAMIDE ADDITIC ON ALUMINA SOL-GEL FORMATION BY ²⁷ AL NMR AND RHEOLOGY MEASUREMENTS L. F. Nazar, L. C. Klein and D. Napier	
THE GEL ROUTE TO YTTRIUM OXIDE F. Ribot, C. Sanchez and J. Livage	139
CHEMICAL AND PHYSICAL PRINCIPLES OF PROCESSING THAT AFFEC MICROSTRUCTURE OF Al_2O_3 -ZrO ₂ COMPOSITES A. Bleier and G. Westmoreland	
PART III - Structure/Property Relationships	
* MATHEMATICAL MODELING OF THE STRUCTURES AND BULK MOD OF TX_2 QUARTZ AND CRISTOBALITE STRUCTURE-TYPES, T = C,Si,Ge AND $X = O,SG. V. Gibbs, M. B. Boisen, Jr., R. T. Downs and A. C. Lasaga$	
* IONIC PROPERTIES OF VANADIUM PENTOXIDE GELS J. Livage, P. Barboux, J. C. Badot and N. Baffier	
* SYNERESIS IN SILICA GEL G. W. Scherer	179
* ADHESION OF HYDRATED SILICATE FILMS T. A. Michalske and K. D. Keefer	187
CRYSTALLIZATION BEHAVIOR OF CHEMICALLY PREPARED AND RAPIDLY SOLIDIFIED PbTiO ₃ R. W. Schwartz and D. A. Payne	199
COMPARISON BETWEEN THE SOL-GEL PROCESSES OF ZIRCONIA ANI THOSE OF ALUMINA A. C. Pierre and D. R. Uhlmann	
STRUCTURAL ORGANIZATION OF EARLY GELS AND PRECIPITATES CHEMICALLY BONDED CERAMICS W. B. White, D. J. Vesper and J. Kraus	
CORRELATIONS BETWEEN PROCESSING PARAMETERS, ULTRASTRUCTURE, AND STRENGTH OF GEL-SILICA J. K. West, R. Nikles and G. Latorre	219

PART IV - Powder Synthesis/Processing

* INORGANIC GELS WITH NANOMETER-SIZED PARTICLES B. J. Tarasevich, J. Liu, M. Sarikaya and I. A. Aksay	225
ALUMINA POWDERS FROM ALUMINUM ALKOXIDE A. Ayral, J. Phalippou and J. C. Droguet	239
MULTI-PHASIC NANOCOMPOSITE SOL-GEL PROCESSING OF CORDIERITE A. Kazakos-Kijowski, S. Komarneni and R. Roy	. 245
CONTROLLED MORPHOLOGY IN ELECTRONIC CERAMIC POWDER PREPARATION R. Legros, R. Metz, J. P. Caffin, A. Lagrange and A. Rousset	. 251
SPHERICAL ZIRCONIA PARTICLES VIA ELECTROSTATIC ATOMIZATION: FABRICATION AND SINTERING CHARACTERISTICS E. B. Slamovich and F. F. Lange	
EFFECTS OF TEMPERATURE AND REACTANT CONCENTRATION ON PROPERTIES OF FINE TIO2 PARTICLES PREPARED BY VAPOR-PHASE HYDROLYSIS OF TITANIUM TETRAISOPROPOXIDE F. Kirkbir and H. Komiyama	
PREPARATION OF STOICHIOMETRIC M'TiO ₃ POWDERS (M' = Ba, Sr, Ca) FROM CATECHOLATE COMPLEXES N. J. Ali, J. Bultitude, L. A. Xue and S. J. Milne	. 269
SOL-GEL SYNTHESIS AND CHARACTERIZATION OF BaTi ₄ O ₉ AND BaTiO ₃ POWDERS P. P. Phule and S. H. Risbud	. 275
PREPARATION OF BaTIO ₃ BY SOL-GEL-PROCESSING G. Tomandl, H. Rösch and A. Stiegelschmitt	. 281
A STUDY OF SOLVENT EFFECTS ON THE SYNTHESIS OF PURE COMPONENT AND COMPOSITE CERAMIC POWDERS BY METAL ALKOXIDE HYDROLYSIS M. T. Harris, C. H. Byers and R. R. Brunson	. 287
PART V - Characterization	
* CHARACTERISATION OF COLLOIDS AND GELS	

J.D.F. Ramsay	293
GROWTH AND STRUCTURE OF PYROGENIC SILICA D. W. Schaefer, A. J. Hurd, D. K. Christen, S. Spooner and J. S. Lin	305
LIGHT SCATTERING OF SiO ₂ MONODISPERSE MICROSPHERES PREPARED BY THE SOL-GEL ROUTE E. Ziemath, M. A. Aegerter, J. Moreira, M. Figueiredo and J. Zarzycki	311
STRUCTURAL INVESTIGATION OF THE HYDROLYSIS-CONDENSATION PROCESS OF A MODIFIED TITANIUM ALKOXIDE F. Babonneau, A. Leaustic and J. Livage	317

	ENERGETICS, COMPOSITION, AND STRUCTURE OF ALKOXIDE DERIVED	
	SILICA GELS P. Maniar, A. Navrotsky, E. M. Rabinovich, D. L. Wood and N. A. Kopylov	323
*	THE OPTICAL BEHAVIOR OF ORGANIC AND ORGANOMETALLIC MOLECULES IN SOL-GEL MATRICES B. Dunn, E. Knobbe, J. M. McKiernan, J. C. Pouxviel and J. I. Zink	331
	CHEMICAL CONTROL OF STRESS IN SOL-GEL DERIVED TITANIA FILMS AND THEIR PRESSURE DEPENDENT OPTICAL PROPERTIES W. S. Frydrych, G. J. Exarhos, K. F. Ferris and N. J. Hess	343
	CHARACTERIZATION OF THE SURFACE AREA AND POROSITY OF SOL-GEL FILMS USING SAW DEVICES G. C. Frye, A. J. Ricco, S. J. Martin and C. J. Brinker	349
	DIELECTRIC RELAXATION ANALYSIS OF WATER ADSORPTION IN SOL GEL DERIVED SILICA GEL MONOLITHS S. Wallace and L. L. Hench	355
	AN ELECTRON MICROSCOPY STUDY OF THE ALKALINE HYDROLYSIS PRODUCTS OF TETRAETHOXYSILANE J. Adams, T. Baird, P. S. Braterman, J. A. Cairns and D. L. Segal	361
	STRUCTURAL EVOLUTION DURING THE SOL TO GEL TRANSITION OF SILICON-ALKOXIDE BASED SOLS OBSERVED BY CRYOGENIC TRANSMISSION ELECTRON MICROSCOPY (CRYO-TEM) J. K. Bailey and M. L. Mecartney	367
	PART VI - Better Superconductors Through Chemistry	
*	PART VI - Better Superconductors Through Chemistry CHEMICAL PREPARATION OF POWDERS AND FILMS FOR HIGH TEMPERATURE SUPERCONDUCTORS B. C. Bunker, J. A. Voigt, D. L. Lamppa, D. H. Doughty, E. L. Venturini, J. F. Kwak, D. S. Ginley, T. J. Headley, M. S. Harrington, M. O. Eatough, R. G. Tissot, Jr. and W. F. Hammetter	373
	CHEMICAL PREPARATION OF POWDERS AND FILMS FOR HIGH TEMPERATURE SUPERCONDUCTORS B. C. Bunker, J. A. Voigt, D. L. Lamppa, D. H. Doughty, E. L. Venturini, J. F. Kwak, D. S. Ginley, T. J. Headley, M. S. Harrington, M. O. Eatough.	
	CHEMICAL PREPARATION OF POWDERS AND FILMS FOR HIGH TEMPERATURE SUPERCONDUCTORS B. C. Bunker, J. A. Voigt, D. L. Lamppa, D. H. Doughty, E. L. Venturini, J. F. Kwak, D. S. Ginley, T. J. Headley, M. S. Harrington, M. O. Eatough, R. G. Tissot, Jr. and W. F. Hammetter CONVENTIONAL AND CHEMICAL PROCESSING OF HIGH T _C SUPERCONDUCTORS M. F. Yan, H. C. Ling, H. M. O'Bryan, P. K. Gallagher and W. W. Rhodes COMPARISON OF SEVERAL CU(I) AND CU(II) PRECURSORS FOR THE SOL-GEL PREPARATION OF HIGH T _C SUPERCONDUCTING METAL OXIDES M. A. Accibal. J. W. Draxton, A. H. Gabor, W. L. Gladfelter, B. A. Hassler	385
	CHEMICAL PREPARATION OF POWDERS AND FILMS FOR HIGH TEMPERATURE SUPERCONDUCTORS B. C. Bunker, J. A. Voigt, D. L. Lamppa, D. H. Doughty, E. L. Venturini, J. F. Kwak, D. S. Ginley, T. J. Headley, M. S. Harrington, M. O. Eatough, R. G. Tissot, Jr. and W. F. Hammetter	385 401
	CHEMICAL PREPARATION OF POWDERS AND FILMS FOR HIGH TEMPERATURE SUPERCONDUCTORS B. C. Bunker, J. A. Voigt, D. L. Lamppa, D. H. Doughty, E. L. Venturini, J. F. Kwak, D. S. Ginley, T. J. Headley, M. S. Harrington, M. O. Eatough, R. G. Tissot, Jr. and W. F. Hammetter CONVENTIONAL AND CHEMICAL PROCESSING OF HIGH T_C SUPERCONDUCTORS M. F. Yan, H. C. Ling, H. M. O'Bryan, P. K. Gallagher and W. W. Rhodes COMPARISON OF SEVERAL CU(I) AND CU(II) PRECURSORS FOR THE SOL-GEL PREPARATION OF HIGH T_C SUPERCONDUCTING METAL OXIDES M. A. Accibal, J. W. Draxton, A. H. Gabor, W. L. Gladfelter, B. A. Hassler and M. L. Mecartney PHYSICO-CHEMICAL CHARACTERIZATION OF THE COPRECIPITATED Y-Ba-Cu-O FINE POWDERS	385 401 407
	CHEMICAL PREPARATION OF POWDERS AND FILMS FOR HIGH TEMPERATURE SUPERCONDUCTORS B. C. Bunker, J. A. Voigt, D. L. Lamppa, D. H. Doughty, E. L. Venturini, J. F. Kwak, D. S. Ginley, T. J. Headley, M. S. Harrington, M. O. Eatough, R. G. Tissot, Jr. and W. F. Hammetter CONVENTIONAL AND CHEMICAL PROCESSING OF HIGH T _C SUPERCONDUCTORS M. F. Yan, H. C. Ling, H. M. O'Bryan, P. K. Gallagher and W. W. Rhodes COMPARISON OF SEVERAL CU(I) AND CU(II) PRECURSORS FOR THE SOL-GEL PREPARATION OF HIGH T _C SUPERCONDUCTING METAL OXIDES M. A. Accibal, J. W. Draxton, A. H. Gabor, W. L. Gladfelter, B. A. Hassler and M. L. Mecartney PHYSICO-CHEMICAL CHARACTERIZATION OF THE COPRECIPITATED Y-Ba-Cu-O FINE POWDERS H. M. Jang, K. W. Moon, J. H. Moon, H. S. Shin, S. J. Kwon and S. Baik SYNTHESIS OF SUPERCONDUCTING POWDERS BY FREEZE-DRYING	385 401 407 413

PART VII - Non-Oxides

** TAILORED ORGANOMETALLICS AS LOW-TEMPERATURE CVD PRECURSORS TO THIN FILMS G. S. Girolami, J. A. Jensen, J. E. Gozum and D. M. Pollina	429
** LOW TEMPERATURE DIRECT REACTIONS BETWEEN ELEMENTAL SILICON AND LIQUID AMMONIA OR AMINES FOR CERAMICS AND CHEMICAL INTERMEDIATES E. A. Pugar and P.E.D. Morgan	439
THE SYNTHESIS OF BORON-CONTAINING CERAMICS BY PYROLYSIS OF POLYMERIC LEWIS BASE ADDUCTS OF DECABORANE(14) D. Seyferth and W. S. Rees, Jr	449
AMINOBORANE POLYMERS AS PRECURSORS OF CERAMIC MATERIALS L. Maya	455
SYNTHESIS OF AIN AND AIN/SiC CERAMICS FROM POLYMERIC MOLECULAR PRECURSORS R. T. Paine, J. F. Janik and C. Narula	461
AN INVESTIGATION INTO THE PREPARATION, PROPERTIES, AND PROCESSING OF SiC/AIN AND Si ₃ N ₄ /AIN SOLID SOLUTIONS FROM ORGANOMETALLIC PRECURSORS L. V. Interrante, C. L. Czekaj, M.L.J. Hackney, G. A. Sigel, P. J. Schields and G. A. Slack	465
STUDIES ON ORGANOALUMINUM PRECURSORS OF ALUMINUM NITRIDE FIBERS R. T. Baker, J. D. Bolt, G. S. Reddy, D. C. Roe, R. H. Staley, F. N. Tebbe and A. J. Vega	471
A NOVEL ROUTE TO ALUMINUM NITRIDE CERAMICS USING A POLYAMINOALANE PRECURSOR M. Seibold and C. Rüssel	477
MICROSTRUCTURAL EVIDENCE OF INTERACTIONS IN SigN4/POLYSILAZANE SYSTEMS K. B. Schwartz and Y. D. Blum	483
NEW CATALYTIC ROUTES TO PRECERAMIC POLYMERS: CERAMIC PRECURSORS TO SILICON NITRIDE AND SILICON-CARBIDE NITRIDE K. A. Youngdahl, R. M. Laine, R. A. Kennish, T. R. Cronin and G.G.A. Balavoine	489
THE PREPARATION OF SOME SILICON (OXY)NITRIDES P. W. Lednor and R. DeRuiter	497
CHEMICAL PRECURSORS TO ZINC SULFIDE: ZnS WHISKER SYNTHESIS T. A. Guiton, C. L. Czekaj, M. S. Rau, G. L. Geoffroy and C. G. Pantano	503
SOL-TO-GEL AND GEL-TO-GLASS TRANSITIONS IN THE As ₂ S ₃ -AMINE SYSTEM T. A. Guiton and C. G. Pantano	509

PART VIII - Poster Session

SOL-GEL PROCESSED BaTiO ₃ N.D.S. Mohallem and M. A. Aegerter
MOLECULAR BUILDING BLOCKS IN LOW PH SILICON SOL-GELS: A SILICON-29 NMR STUDY L. W. Kelts and N. J. Armstrong
THE EFFECT OF TRIOXANE IN HF-CATALYZED SOL-GEL REACTIONS OF TETRAETHOXYSILANE P. B. Dorain, J. J. Rafalko, J. E. Feeney, C. E. Forbes, R. V. Carney and T. M. Che 523
CHARACTERIZATION OF NEWLY SYNTHESIZED NOVEL GRAPHITE FILMS K. M. Krishnan, J. Kouvetakis, T. Sasaki and N. Bartlett
SILICON-29 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY OF SILICON ETHOXIDE AND TITANIUM ETHOXIDE SOLS: RESONANCE ASSIGNMENTS AND SOLUTION STABILITY E. N. Boulos, K. R. Carduner, R. O. Carter, III and M. F. Best
THE CONTROL OF PRECIPITATION IN SOL-GEL SOLUTIONS H. Zheng, M. W. Colby and J. D. Mackenzie
AN ANALYTICAL AND EXPERIMENTAL STUDY OF PLASMA SPRAYING OF ALUMINA D. J. Varacaile, Jr
THE STRUCTURES OF TANTALUM PENTOXIDE FILM FORMED BY REACTIVE DC MAGNETRON SPUTTER-DEPOSITION OF Ta P-H. Chang, J. G. Bohlman, H. Y. Liu, J. A. Keenan, B. W. Shen and I-C. Chen
OXIDATION REDUCTION OF SOL-GEL DERIVED WO ₃ ON Ni SUBSTRATES J. Covino and G. E. McManis
SURFACE STUDIES OF ALUMINUM NITRIDE THIN FILMS T. K. Hatwar and T. R. Pian
OXIDE-DIAMOND COMPOSITE COATING VIA SOL-GEL METHOD A. Nazeri-Eshghi, J. D. Mackenzie and J-M. Yang
NEW STRUCTURES OF PRECERAMIC POLYSILAZANES SYNTHESIZED BY TRANSITION METAL CATALYSIS Y. D. Blum, K. B. Schwartz, E. J. Crawford and R. D. Hamlin
SILICON CARBIDE VIA THE HYDROLYSIS-CONDENSATION PROCESS OF DIMETHYLDIETHOXYSILANE/TETRAETHOXYSILANE COPOLYMERS K. C. Chen, K. J. Thorne, A. Chemseddine, F. Babonneau and J. D. Mackenzie
PREPARATION OF TITANIUM NITRIDE (TiN _{1-x-y} C _x O _y) FROM Ti(OPr ⁱ) ₄ -TRIETHANOLAMINE CONDENSATION PRODUCT BY PYROLYSIS K. Kuroda, Y. Tanaka, Y. Sugahara and C. Kato
THE USE OF ORGANOMETALLIC PRECURSORS TO SILICON NITRIDE AS BINDERS S. T. Schwab and C. R. Blanchard-Ardid
PHYSICAL PROPERTIES OF DRIED Na ₂ O-SiO ₂ MONOLITHS R. Li and L. L. Hench

PHYSICAL AND STRUCTURAL EVOLUTION OF SOL-GEL DERIVED TiO ₂ -SiO ₂ GLASSES Y-C. Cheng and L. L. Hench	93
GEL-BASED PROCESSING OF GLASS-CERAMIC PARTICULATE COMPOSITES J. C. Walck	97
SOL-GEL PROCESSING OF TRANSPARENT MgA12O4 Y-F. Yu, S. Heng, T-I. Mah and E. E. Hermes	01
THERMAL EVOLUTION AND ELECTRICAL PROPERTIES OF RARE-EARTH OXIDE DOPED ZIRCONIA B. S. Chiou, M. Y. Lee, H. T. Dai and J. G. Duh	605
EXPERIENCES WITH SOL-GEL BONDED HIGH POROSITY ALUMINA FIBER MATERIALS FOR FILTER APPLICATIONS K. E. Handrick, A. Mühlratzer, R. Ostertag, D. Sporn and H. Schmidt	511
CONTINUOUS SPINNING OF ZIRCONIA FIBERS: RELATIONS BETWEEN PROCESSING AND STRENGTH M. E. Khavari, F. F. Lange, P. Smith and D. B. Marshall	517
HIGH RESOLUTION ELECTRON MICROSCOPY OF MIXED URANIUM OXIDES M. C. Pienkowski, M. L. Jenkins, J. L. Hutchison and P. T. Moseley	523
LUMINESCENT OXIDE GELS M. D. Newsham, M. K. Cerreta, K. A. Berglund and D. G. Nocera	527
SOL-GEL PROTECTIVE FILMS FOR METAL SOLAR MIRRORS S. T. Reed and C. S. Ashley	531
PLANARIZATION OF METAL SUBSTRATES FOR SOLAR MIRRORS C. S. Ashley, S. T. Reed and A. R. Mahoney	535
PREPARATION OF YBa ₂ Cu ₃ O ₇₋₆ SUPERCONDUCTOR BY SOL-GEL METHOD AND FIBER DRAWING H. Kozuka, T. Umeda, J. S. Jin and S. Sakka	539
EXAMINATION OF YBa ₂ Cu ₃ O _{6+x} PRECURSOR SOL USING ¹³ C NMR SPECTROSCOPY AND QUASIELASTIC LASER LIGHT SCATTERING S. Kramer, G. Moore, G. Kordas, P. A. Keifer and C.T.G. Knight	543
SYNTHESIS AND PROPERTIES OF YBaSrCu ₃ O _{6.9} PREPARED FROM SOLUBLE PRECURSORS P. J. Nigrey, J. F. Kwak, E. L. Venturini, M. O. Eatough and R. J. Baughman6	649
POSITRONIUM DECAY STUDY OF PORE SIZES IN SILICA SOL-GELS T. W. Zerda, G. Hoang, B. Miller, C. A. Quarles and G. Orcel	553
IN SITU NMR STUDY OF GEL PORE STRUCTURE DURING AGING AND DRYING D. M. Smith, C. L. Glaves, P. J. Davis and C. J. Brinker	657
THE SYNTHESIS OF ALUMINUM NITRIDE FROM ALUMINUM HYDRIDE A. Ochi, H. K. Bowen and W. E. Rhine	

VANADIUM DIOXIDE FILMS GROWN FROM VANADIUM TETRAKIS(t-BUTOXIDE) BY THE SOL-GEL PROCESS K. R. Speck, H. S-W. Hu, R. A. Murphy and R. S. Potember	667
VAPOGEL - A NEW GLASS FORMATION TECHNIQUE J. W. Fleming and S. A. Fleming	673

PART IX - Aerogels

PROCESS CONSIDERATIONS IN MONOLITHIC AEROGELS A. J. Hunt and K. D. Lofftus	. 679
PARTIALLY HYDROLYZED ALKOXYSILANES AS PRECURSORS FOR SILICA	
AEROGELS T. M. Tillotson, L. W. Hrubesh and I. M. Thomas	. 685
PRECURSOR CHEMISTRY AND THE STRUCTURE OF SILICA AEROGELS D. W. Schaefer, C. J. Brinker, J. P. Wilcoxon, D-Q. Wu, J. C. Phillips and B. Chu	. 691
PARAMETERS AFFECTING ELASTIC PROPERTIES OF SILICA AEROGELS T. Woignier, J. Phalippou and R. Vacher	. 697
OPTICAL CHARACTERIZATION OF SILICA AEROGEL L. W. Hrubesh and C. T. Alviso	. 703
SUPERCRITICAL FLUID APPLICATIONS IN ADVANCED MATERIALS PROCESSING	
R. A. Wagner, V. J. Krukonis and M. P. Coffey	. 711

PART X - Films

1	PHYSICS AND APPLICATIONS OF DIP COATING AND SPIN COATING L. E. Scriven	717
	ELLIPSOMETRIC IMAGING OF DRYING SOL-GEL FILMS A. J. Hurd and C. J. Brinker	731
•	FILM PREPARATION BY INORGANIC-ORGANIC SOL-GEL SYNTHESIS H. Schmidt, G. Rinn, R. Naβ and D. Sporn	743
	POLY [BENZOBIS THIAZOLE] (PBT)/SOL-GEL MICROCOMPOSITES R. R. Haghighat, R. F. Kovar and R. W. Lusignea	755
	FORMATION AND CHARACTERIZATION OF INORGANIC MEMBRANES FROM ZEOLITE-SILICA MICROCOMPOSITES T. Bein, K. Brown, P. Enzel and C. J. Brinker	761
	INVESTIGATION OF PROCESSING PARAMETERS ON STABILITY OF (SOG) FILMS ON PATTERNED SI WAFERS S. G. Shyu, T. J. Smith, S. Baskaran and R. C. Buchanan	767
	SOL-GEL PROCESSING OF LITHIUM NIOBATE THIN-LAYERS ON SILICON D. J. Eichorst and D. A. Payne	773

STRUCTURE AND PHYSICAL PROPERTIES OF TiO ₂ -V ₂ O ₅ GEL COATINGS H. Hirashima and S. Kamimura	779
SYNTHESIS OF INORGANIC FILMS FROM ORGANOSILICON POLYMERS Y-F. Yu, S. Heng, D. B. Patrizio and A. W. McCormick	785
CHARACTERIZATION OF BARIA-ALUMINA-SILICA GLASSES AND YBa ₂ Cu ₃ O _{7-x} SUPERCONDUCTING FILMS PREPARED BY THE SOL-GEL-PROCESS P. Strehlow, H. Schmidt and M. Birkhahn	791
METAL OXIDE FILMS FROM CARBOXYLATE PRECURSORS W. W. Davison, S. G. Shyu, R. D. Roseman and R. C. Buchanan	797
ELECTRICAL PROPERTIES OF METAL-OXIDE-SILICON STRUCTURES WITH SOL-GEL OXIDES W. L. Warren, P. M. Lenahan and C. J. Brinker	803
OPTIMIZATION OF SOL-GEL FILM PROPERTIES S. M. Melpolder and B. K. Coltrain	811
CHEMICAL DURABILITY OF SiO ₂ -TiO ₂ -ZrO ₂ GLASS FILMS MADE FROM ALKOXIDE SOLUTIONS W. Beier and G. H. Frischat	817
THE INSTABILITY OF POLYCRYSTALLINE THIN FILMS: EXPERIMENT AND THEORY K. T. Miller, F. F. Lange and D. B. Marshall	823
PART XI - Late Paper Accepted	
CHEMICAL WAYS TO YBa2Cu307-X SUPERCONDUCTING MATERIALS	

J. C. Bernier, S. Vilminot, S. El Hadigui, C. His, J. Guille, T. Dupin, R. Barral and G. Bouzat	831
AUTHOR INDEX	839
SUBJECT INDEX	843

FORMATION AND CHARACTERIZATION OF INORGANIC MEMBRANES FROM ZEOLITE-SILICA MICROCOMPOSITES

Thomas Bein^{*}, Kelly Brown^{*}, Patricia Enzel^{*}, and C. Jeffrey Brinker^{**} ^{*}Department of Chemistry, University of New Mexico, Albuquerque, NM 87131 ^{**}Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185

ABSTRACT

Small crystals of zeolites (500-1000 nm) with two- and three-dimensional channel systems (faujasite and ZSM-5 structures) were embedded in amorphous thin films derived from TEOS hydrolyzed in alcoholic solution. Scanning electron microscopy studies show that the zeolites can be quite evenly dispersed in the membrane, resulting in single layers of zeolite crystals protruding out of the amorphous matrix. In situ FT-IR studies with a series of probe molecules revealed that in most membranes the zeolites were 100% accessible from the gas phase. The membranes excluded molecules which are larger than the pore openings of the zeolite embedded in the composite.

INTRODUCTION

In view of the urgent demand for selective, microscopic sensors^{1,2} which can be integrated into microelectronic circuits, our research program is aimed at the synthesis and characterization of a new generation of well-defined inorganic membrane structures with controlled porosity in the one-nanometer range. These inorganic membranes will ultimately be deposited on the surface of chemical sensors and serve as "molecular sieves" which control access of selected target molecules to the sensor surface.

This communication reports on the design of porous inorganic membranes via the formation of zeolite-amorphous microcomposites. Zeolites are crystalline, porous materials, typically aluminosilicates with charge compensating cations in open channel structures^{3,4} with pore diameters ranging from about 0.3 to 0.8 nm. We expect the following advantages from our zeolite approach: A selection of channel structures with well-defined diameters can be synthesized and acid/base properties can be adjusted within a broad range by ion-exchange⁵, variation of the framework metal⁶, or heat treatments and subsequent doping. The hydrophobicity of the material is tailored by appropriate choice of the framework composition.

A few studies related to zeolite membranes have been reported by other groups, including permeation experiments through single crystals of NaX zeolite⁷, and the preparation of alcohol-selective pervaporation systems by the addition of silcalite to silicone rubber membranes⁸. However, the latter systems function by modification of selectivity and flux through the membrane and do not exclude competing gases. Complete exclusion of all competing gases from the membrane is the goal of the present study.

An important component of the porous, inorganic membranes prepared in this study is the glass or ceramic matrix in which zeolite crystals are incorporated. Synthesis of this inorganic matrix is accomplished through "sol-gel" processing of hydrolyzed tetraethylorthosilicate (TEOS). Depending on the synthesis conditions employed, inorganic polymer growth (via M-O-M bonding) can be biased toward extended, weakly branched structures or compact, fully polymerized colloidal particles^{9,10,11}. Final consolidation of the porous structure to a non-porous, "glass-like" film generally occurs by viscous sintering ^{12,13}. When the porous gel phase is completely consolidated, it will serve as an impermeable matrix, allowing permeability through zeolite channels exclusively. We have studied model membranes on Si wafers made with faujasite and ZSM-5 zeolite structures with SEM and adsorption experiments monitored by in situ FT-IR spectroscopy.

EXPERIMENTAL

Zeolite ZSM-5 was synthesized from NaOH, Al_{2O_3} , colloidal silica (Ludox), and tetrapropylammonium hydroxide (Fluka, 10% solution) according to reference ¹⁴ (ZSM₁-5). Sample ZSM₂-5 was refluxed 3 times in 0.1 M HCI. The acid form of commercial ammoniumexchanged faujasite NH₄Y (Linde LZY62) was obtained by heating under a vacuum of 10⁻⁶ Torr with a rate of 5 Kmin⁻¹ to 720 K in the infrared in-situ cell (see below). Silica gel precursors were hydrolyzed as described in ref. 9. The acid-catalyzed gel is labeled A2, the base-catalyzed gel B2.

Membrane HY/B2A2. The NH4Y zeolite powder was dispersed in ethanol, added to the sol phase B2 with a vol.-ratio equal to 2:1, and dispersed using sonication for 5 min. 2 ml of the mixture were spin cast on intrinsic Si wafers (2 mm thickness) at 1000 rpm. The first membrane layer was coated with a thin top layer of A2 gel. ZSM1-5 and ZSM2-5 zeolites were dispersed in the A2 sol and dip-coated in one to n layers on the Si wafer to give membranes [ZSM1/A2]n. Other sol-dispersions were spray-coated on the Si wafer. The membranes were densified at 570 K for 10 min. after each coating step.

A combination of in-situ FT-IR experiments (Mattson Polaris spectrometer at 4 cm⁻¹ resolution) and temperature-programmed-desorption/MS was used to study adsorption behavior and surface acidity of the zeolite-silica membranes. Small sample wafers (0.5 cm x 1 cm) were mounted in a stainless steel UHV cell equipped with CaF2 windows and sealed with Conflat flanges. The samples were heated under vacuum at a rate of 5 K/min to 720 K, cooled to 295 K. and exposed to ca. I Torr vapor of organic bases. The sample cell was connected to a compact UHV vacuum system pumped by a turbumolecular pump and equipped with a Dycor M200 quadrupole mass spectrometer. Scanning electron micrographs of the as-synthesized zeolite crystals and the zeolite-silica membranes were taken with an Hitachi S450 microscope at the Institute of Meteoritics, Department of Geology, UNM.

RESULTS AND DISCUSSION

1. Study of faujasite-silica membranes.

Crystals of NH4Y zeolites were embedded in thin-film silica matrices and deposited on silicon wafers. The average crystal size, precursor for the silica film, film layers, and the film thickness are reported in Table 1.

_

Table 1. Components and Dimensions of Zeolite-Silica Membranes Deposited on Si-Waters.									
Sample name	Zeolite	Crystal size/nm	Gel Precursor	Film thickness/nm ^a					
HY/B2A2	NH4Y	300-1000	B2 then A2 coat	150 + 150					
[ZSM1/A2]3 ^b	ZSM1-5	500	A2	500					
[ZSM2/A2]3	ZSM2-5	500-1000	A2	500					

^a Thickness determined using ellipsometry and SEM data.

^b This membrane was obtained by stepwise deposition of three layers of $[ZSM_1/A2]$.

Most of the zeolite crystals of the membrane HY/B2A2 protrude slightly out of the silica matrix, thus they can be expected to be accessible to probe molecules adsorbing from the gas phase (Figure 1a). This is an important feature which is required for a successful implementation of these membranes as sensor coatings. The permeability of A2 sol-derived thin films has been examined separately using SAW device adsorption experiments (see Frye et al., this volume). After densification at 670 K, the A2 films alone did not even adsorb nitrogen. Therefore it can safely be assumed that the membrane area between zeolite crystals forms a dense layer that excludes all molecules of interest from the substrate surface.

The central issue of molecular access to the membrane-embedded zeolite crystals was addressed using infrared spectroscopy. Protons which are introduced into the zeolite by ion exchange will typically occupy well-defined positions at zeolite framework Si-O-Al oxygen bridges. Zeolitic bridged hydroxyls can be distinguished spectroscopically from other (terminal) hydroxyls on metal oxide surfaces, because they have O-H stretch vibrations at energies well below those of terminal hydroxyls¹⁵. For instance, the structural hydroxyls of HY zeolite (faujasite structure) appear at ca. 3640 and 3540 cm⁻¹, while terminal Si-OH typically occur at 3720-50 cm⁻¹. The surface hydroxyls observed on the gel-derived matrices (without zeolite) are characterized by a broad, weak IR absorption with a sharp onset at ca. 3750 cm⁻¹ down to ca. 3200 cm⁻¹.

The kinetic diameter of a base molecule will determine if it can react exclusively with acid sites located at external positions of the zeolite crystal, or if it gains access into the zeolite channel system. This principle is demonstrated by comparing the reaction of dehydrated HY zeolite with pyridine (kinetic diameter 5.9 Å) and with perfluorotributylamine (10.2 Å). (Table 2). Only pyridine reacts with the internal, structural hydroxyls of the zeolite. It should be noted that the protonation of pyridine generates a characteristic band at 1545 cm⁻¹ which is considered diagnostic for the interaction of pyridine with Bronsted acid sites.

Pyridine and perfluorotributylamine were adsorbed at dehydrated faujasite-silica membranes in the infrared cell. The two probe molecules behave exactly as if they were adsorbed at free zeolite crystals. Pyridine has free access into 100% of the matrix-embedded zeolite channel system and is being protonated to pyridinium ion (indicated by a band at 1545 cm⁻¹), whereas the bulky amine is excluded from the zeolite hydroxyls (Figure 2a). This observation confirms that intact zeolites are embedded in the matrix, and, more importantly, that these crystals are indeed accessible to molecules adsorbing from the gas phase.

2. Study of ZSM-5-silica membranes.

Small crystals of ZSM-5 zeolites were embedded in thin-film silica matrices and deposited on silicon wafers by dip-coating. The sample parameters are reported in Table 1. The morphology of the ZSM-5 thin film samples appears to be more perfect than that of faujasite-silica membranes as demonstrated in Figure 1b. Zeolite crystals which might occur in small agglomerates are embedded in the smooth, *crack-free* film such that the crystals reach partially

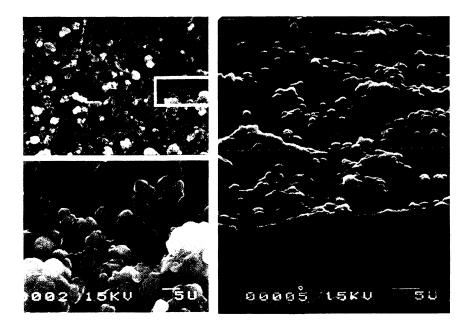


Figure 1. Electron Micrographs of Membrane HY/B2A2 (left) and [ZSM₂/A2]₃ (right)

<u>Probes</u> : Kinetic diameter <u>Sample</u>	Pyridine 5.9	(C₄H9)3N 8.1	i-octane ^b ca. 6.2	NH3 2.6	(C4F9)3N 10.2 (Å)
HY HY/B2A2 ZSM1-5 [ZSM1/A2]3 ZSM2-5 [ZSM2/A2]3 [ZSM2/A2]3 [*]	0% 0% 0% - reduced reduced	0% 0% 50% 100% - 100%	- - 0% shift 0% shift ca. 50% shift -	- 30% 0% - 0%	100% - 100% - - -

Table 2. Remaining Intensity of IR Hydroxyl Bands in Zeolites and Zeolite-Silica Membranes after Adsorption of Organic Species^a.

^a The spectroscopic observations are summarized by indicating the behavior of the 3640 cm⁻¹ band (HY) or the 3725 cm⁻¹ acidic hydroxyl groups (ZSM-5) upon equilibration at 295 K with 0.2-1.0 torr of the probe molecules. Percentages indicate estimated remaining intensity of the acid bands upon adsorption. Shift percentages: Estimated fraction of 3725 band which is shifted down to 3700 cm⁻¹ upon adsorption of 2,2,4-trimethylpentane. The different probe molecules could be desorbed at temperatures between 370 and 720 K.

b i-octane: 2,2,4 trimethylpentane.

[ZSM₂/A2]₃*: Membrane [ZSM₂/A2]₃ refluxed in 0.1 M HCl for 6 h.

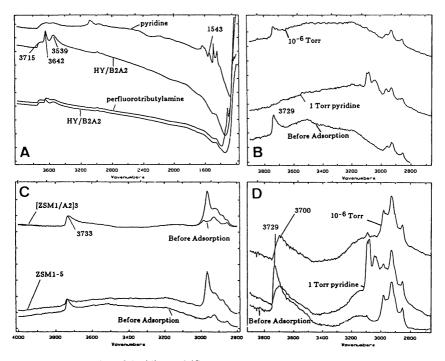


Figure 2. Adsorption of Pyridine and $(C_{4}F_{9})_{3}N$ on HY/B2A2 (A), Pyridine on ZSM₁-5 (B), $(C_{4}H_{9})_{3}N$ on ZSM₁-5 and [ZSM₁/A2]₃ (C), and Pyridine on [ZSM₁/A2]₃ (D).

out of the film. This feature is of obvious importance for selective sensor and separations applications, because cracks would open competitive diffusion paths and serve as adsorbing pores for analyte molecules. Adsorption studies similar to those with the faujasite membranes were carried out in order to determine the accessibility of zeolitic pores to different probe molecules.

The hydroxyl groups observed in ZSM-5 zeolites are quite different from the structural hydroxyls in faujasite and have been widely studied. As a result of the lower Al content, far less structural hydroxyls than in faujasite can be expected. Even though there is considerable controversy about the detailed interpretation of experimental observations, several basic results appear to be undisputed: A freshly prepared ZSM-5 sample containing tetrapropylammonium (TPA) and Na cations can be calcined in air at ca. 770 K to yield a zeolite with a small infrared band at ca. 3720-3740 wavenumbers^{16,17}. If the zeolite contains framework AI, subsequent ion exchange with either dilute HCl or NH4Cl and further degassing yields a second hydroxyl band at ca. 3610 wavenumbers, which is assigned to structural, bridged hydroxyl groups most likely located at channel intersections in the zeolite^{18,19}. The origin of the 3740 band is controversial: it has been related to external Si-OH at the outer surface of the crystal, to contaminations from the synthesis gel ²⁰, to amorphous dealumination products, and to dealumination-associated Si-OH ('nests') formed in the interior of the channel system²⁰. The ZSM-5 synthesis conditions in this study were aimed at the formation of very small crystals. This has been achieved by early quenching of the synthesis mixture shortly after nucleation. The ZSM-5 samples examined so far did not exhibit a significant infrared band at 3610 wavenumbers, indicating that no Al was incorporated into the crystals.

Adsorption of probe molecules of different kinetic diameters on ZSM-5 has been reported ²¹. The adsorption behavior of vapors of pyridine, 2,2,4-trimethylpentane, tributylamine, and others on free ZSM-5 zeolites and zeolite membranes is summarized in Table 2. Of these molecules, only pyridine and ammonia can enter the channels of ZSM-5.

Based upon the spectroscopic data, the adsorption behavior of the ZSM-5 crystals alone and embedded in the silica matrix can be consistently described with the following model: A large fraction of terminal hydroxyls of the free zeolite ZSM-5 is not accessible to the bulky tributylamine, thus there is a distribution of internal vs. external (accessible) hydroxyls of ca. 50:50 % (Figure 2c). Pyridine in equilibrium with the zeolite reacts with all hydroxyls, but evacuation at 295 K restores only about 50% which are believed to reside at the external surface of the crystals where the binding energy should be smaller (Figure 2b). Hydrocarbon molecules having access to acid surface sites are known to shift the hydroxyl frequencies by some ten wavenumbers. 2,2,4-trimethylpentane does not appear to react with the hydroxyls of ZSM₁-5. If the ZSM₂-5 is refluxed in dilute HCl, the number of hydroxyls accessible to 2,2,4trimethylpentane increases substantially. This is tentatively explained by an increased degree of hydrolysis of the ZSM-5 lattice, creating more hydroxyl 'nests'.

If calcined ZSM-5 crystals are embedded in the silica membrane, most of the terminal hydroxyls (at 3725 cm⁻¹) are still present (Figure 2d). Thus these hydroxyls do *not* completely react with the silica gel in condensation reactions, as might be expected if they were all located at the external crystal surface. This result confirms the assignment of a major fraction of the 3725 band to *internal* hydroxyls which are not accessible to condensation reactions with the silica gel. Pyridine has still unobstructed access to the channel system of the dehydrated zeolite in sample [ZSM₁/A2]₈. This is demonstrated in Figure 2d. All observed zeolitic hydroxyl groups react with pyridine at 295 K and show a typical C-C vibration of hydrogen-bonded pyridine at about 1595 cm⁻¹. It should be noticed that the broad infrared features due to hydroxyls of the matrix do not react with any of the probe molecules used here. Complete reaction of NH3 with [ZSM₁/A2]s confirms that all of the zeolite hydroxyls are accessible from the gas phase. It can be concluded that *the embedding procedure does not clog the ZSM-5 channel system* towards access from the gas phase. It appears that the very thin coating of silica on the protruding zeolite crystals may retract upon calcination and open up a significant portion of the interconnected por esystem.

In contrast to the free ZSM crystals, the membrane-embedded zeolites did not show any reaction of the remaining hydroxyl groups with either 2,2,4-trimethylpentane or tributylamine (Figure 2c). This result is interpreted as follows: the <u>external</u> hydroxyl groups at the ZSM crystal surface link with the silica gel in condensation reactions. Thus, a gas-tight seal between matrix and zeolite is created, and the only molecules being adsorbed are those that can enter the accessible zeolite channels.

The effect of the surface properties of the zeolite crystals was examined by comparing the behavior of HCl-treated ZSM₂₋₅ in the silica membrane $[ZSM_2/A2]_3$ with the above observations. The pyridine adsorption of this membrane appears to be more hindered compared

to $[ZSM_1/A2]_3$. It is suggested that the HCl treatment of ZSM_2-5 creates more external SiOH groups through hydrolysis and favors extensive 'anchoring' of a thin layer of the A2 gel during the composite formation which prevents complete access from the gas phase. An attempt to etch this coat by reacting the wafer with HCl (membrane $[ZSM_2/A2]_3^*$) appeared to be successful: The pyridine adsorption resembles closely that of the untreated membrane $[ZSM_1/A2]_3$. (Table 2)

CONCLUSION

We conclude that the immersion of small zeolite microcystals in sol-gel thin film precursors is a viable route to the rational design of highly selective membranes which discriminate between molecules in the angstrom size range. This type of microcomposite membranes offers future potential for applications on chemical sensor surfaces.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the technical assistance of C. S. Ashley and S. Reed. Financial support from the National Science Foundation (Grant DMR-8706167) is gratefully appreciated.

REFERENCES

- J. Janata, R. J. Huber, <u>Solid State Chemical Sensors</u>, (Academic Press, Orlando, Florida, 1985)
- ² <u>Chemical Sensors</u>, edited by T. Seiyama, K. Fueki, J. Shiokawa, S. Suzuki, (Kodansha, Tokyo, 1983)
- 3 D. W. Breck, Zeolite Molecular Sieves, (Krieger, Malabar, Florida, 1984)
- 4 R. M. Barrer, <u>Hydrothermal Chemistry of Zeolites</u>, (Academic Press, New York, 1982)
- ⁵ P. A. Jacobs, W. J. Mortier, J. B. Uytterhoeven, J. Inorg. Nucl. Chem., <u>40</u>, 1919 (1978)
- ⁶ P. A. Jacobs, <u>Carboniogenic Activity of Zeolites</u>, (Elsevier, Amsterdam, 1977)
- 7 D. L. Wernick, E. J. Osterhuber, J. Membrane Sci. 22, 137 (1985)
- 8 H. J. C. te Hennepe, D. Bargeman, M. H. V. Mulder, C. A. Smolders, J. Membrane Sci. 35, 39 (1987)
- 9 C. J. Brinker, K. D. Keefer, D. W. Schaefer, C. S. Ashley, J. Non-Crystalline Solids <u>48</u>, 47 (1982)
- 10 C. J. Brinker, G. W. Scherer, J. Non-Crystalline Solids 70, 301 (1985)
- 11 C. J. Brinker, K. D. Keefer, D. W. Schaefer, R. A. Assink, B. D. Kay, C. S. Ashley, J. Non-Crystalline Solids <u>63</u>, 45 (1984)
- 12 C. J. Brinker, G. W. Scherer, E. P. Roth, J. Non-Crystalline Solids 72, 369 (1985)
- 13 C. J. Brinker, W. D. Drotning, G. W. Scherer, in <u>Better Ceramics Through Chemistry</u>, edited by C. J. Brinker, D. E. Clark, D. R. Ulrich, (Elsevier, Amsterdam, 1984) p.25
- 14 R. A. van Santen, J. Keijsper, G. Ooms, A. G. T. G. Kortbeek, in <u>New Developments in Zeolite Science and</u> <u>Technology</u>, edited by Y. Murakami, A. Iijima, J. W. Ward, (Kodansha, Tokyo 1986) p. 169
- ¹⁵ J. W. Ward, in <u>Zeolite Chemistry and Catalysis</u>, edited by J. A. Rabo, ACS Monograph 171, (ACS, Washington D.C., 1976) p. 118
- 16 J. Datka, E. Tuznik, Zeolites 5, 230 (1985)
- 17 M. Derewinski, J. Haber, J. Ptaszynski, J. A. Lercher, G. Rumplmayr, in <u>New Developments in Zeolite</u> Science and Technology, edited by Y. Murakami, A. Iijima, J. W. Ward, (Kodansha, Tokyo, 1986) p. 957
- ¹⁸ N. Y. Topsoe, K. Pedersen, E. G. Derouane, J. Catal. <u>70</u>, 41 (1981)
- ¹⁹ P. A. Jacobs, R. von Ballmoos, J. Phys. Chem. 86, 3050 (1982)
- 20 M. B. Sayed, R. A. Kydd, R. P. Cooney J. Catal. 88, 137 (1984)
- 21 J. Take, T. Yamagushi, K. Miamato, H. Ohjama, M. Misono, in <u>New Developments in Zeolite Science and</u> <u>Technology</u>, edited by Y. Murakami, A. Ijima, J. W. Ward, (Kodansha, Tokyo, 1986) p. 495