7,082 research outputs found

    Frustrated magnetism and resonating valence bond physics in two-dimensional kagome-like magnets

    Get PDF
    We explore the phase diagram and the low-energy physics of three Heisenberg antiferromagnets which, like the kagome lattice, are networks of corner-sharing triangles but contain two sets of inequivalent short-distance resonance loops. We use a combination of exact diagonalization, analytical strong-coupling theories, and resonating valence bond approaches, and scan through the ratio of the two inequivalent exchange couplings. In one limit, the lattices effectively become bipartite, while at the opposite limit heavily frustrated nets emerge. In between, competing tunneling processes result in short-ranged spin correlations, a manifold of low-lying singlets (which can be understood as localized bound states of magnetic excitations), and the stabilization of valence bond crystals with resonating building blocks.Comment: Published versio

    KCrF_3: Electronic Structure, Magnetic and Orbital Ordering from First Principles

    Get PDF
    The electronic, magnetic and orbital structures of KCrF_3 are determined in all its recently identified crystallographic phases (cubic, tetragonal, and monoclinic) with a set of {\it ab initio} LSDA and LSDA+U calculations. The high-temperature undistorted cubic phase is metallic within the LSDA, but at the LSDA+U level it is a Mott insulator with a gap of 1.72 eV. The tetragonal and monoclinic phases of KCrF_3 exhibit cooperative Jahn-Teller distortions concomitant with staggered 3x^2-r^2/3y^2-r^2 orbital order. We find that the energy gain due to the Jahn-Teller distortion is 82/104 meV per chromium ion in the tetragonal/monoclinic phase, respectively. These phases show A-type magnetic ordering and have a bandgap of 2.48 eV. In this Mott insulating state KCrF_3 has a substantial conduction bandwidth of 2.1 eV, leading to the possibility for the kinetic energy of charge carriers in electron- or hole-doped derivatives of KCrF_3 to overcome the polaron localization at low temperatures, in analogy with the situation encountered in the colossal magnetoresistive manganites.Comment: 7 pages, 11 figure

    Non conventional screening of the Coulomb interaction in low dimensional and finite size system

    Get PDF
    We study the screening of the Coulomb interaction in non polar systems by polarizable atoms. We show that in low dimensions and small finite size systems this screening deviates strongly from that conventionally assumed. In fact in one dimension the short range interaction is strongly screened and the long range interaction is anti-screened thereby strongly reducing the gradient of the Coulomb interaction and therefore the correlation effects. We argue that this effect explains the success of mean field single particle theories for large molecules.Comment: 4 pages, 5 figure

    Spacetime Encodings II - Pictures of Integrability

    Get PDF
    I visually explore the features of geodesic orbits in arbitrary stationary axisymmetric vacuum (SAV) spacetimes that are constructed from a complex Ernst potential. Some of the geometric features of integrable and chaotic orbits are highlighted. The geodesic problem for these SAV spacetimes is rewritten as a two degree of freedom problem and the connection between current ideas in dynamical systems and the study of two manifolds sought. The relationship between the Hamilton-Jacobi equations, canonical transformations, constants of motion and Killing tensors are commented on. Wherever possible I illustrate the concepts by means of examples from general relativity. This investigation is designed to build the readers' intuition about how integrability arises, and to summarize some of the known facts about two degree of freedom systems. Evidence is given, in the form of orbit-crossing structure, that geodesics in SAV spacetimes might admit, a fourth constant of motion that is quartic in momentum (by contrast with Kerr spacetime, where Carter's fourth constant is quadratic).Comment: 11 pages, 10 figure

    Electronic Correlations in Oligo-acene and -thiophene Organic Molecular Crystals

    Get PDF
    From first principles calculations we determine the Coulomb interaction between two holes on oligo-acene and -thiophene molecules in a crystal, as a function of the oligomer length. The relaxation of the molecular geometry in the presence of holes is found to be small. In contrast, the electronic polarization of the molecules that surround the charged oligomer, reduces the bare Coulomb repulsion between the holes by approximately a factor of two. In all cases the effective hole-hole repulsion is much larger than the calculated valence bandwidth, which implies that at high doping levels the properties of these organic semiconductors are determined by electron-electron correlations.Comment: 5 pages, 3 figure

    Theory for Magnetism and Triplet Superconductivity in LiFeAs

    Full text link
    Superconducting pnictides are widely found to feature spin-singlet pairing in the vicinity of an antiferromagnetic phase, for which nesting between electron and hole Fermi surfaces is crucial. LiFeAs differs from the other pnictides by (i) poor nesting properties and (ii) unusually shallow hole pockets. Investigating magnetic and pairing instabilities in an electronic model that incorporates these differences, we find antiferromagnetic order to be absent. Instead we observe almost ferromagnetic fluctuations which drive an instability toward spin-triplet p-wave superconductivity.Comment: Published versio

    A Potts model for the distortion transition in LaMnO3_3

    Full text link
    The Jahn-Teller distortive transition of \lmo is described by a modified 3-state Potts model. The interactions between the three possible orbits depends both on the orbits and their relative orientation on the lattice. Values of the two exchange parameters which are chosen to give the correct low temperature phase and the correct value for the transition temperature are shown to be consistent with microscopy theory. The model predicts a first order transitions and also a value for the entropy above the transition in good agreement with experiment. The theory with the same parameters also predicts the temperature dependence of the order parameter of orbital ordering agreeing well with published experimental results. Finally, the type of the transition is shown to be close to one of the most disordered phases of the generalised Potts model. The short range order found experimentally above the transition is investigated by this model.Comment: 16 pages, 7 figures and no tables. Re-submitted to Phys. Rev.
    • …
    corecore