545 research outputs found

    PINK1/Parkin Mediated Mitophagy, Ca2+ Signalling, and ER-Mitochondria Contacts in Parkinson's Disease

    Get PDF
    Endoplasmic reticulum (ER)-mitochondria contact sites are critical structures for cellular function. They are implicated in a plethora of cellular processes, including Ca2+ signalling and mitophagy, the selective degradation of damaged mitochondria. Phosphatase and tensin homolog (PTEN)-induced kinase (PINK) and Parkin proteins, whose mutations are associated with familial forms of Parkinson's disease, are two of the best characterized mitophagy players. They accumulate at ER-mitochondria contact sites and modulate organelles crosstalk. Alterations in ER-mitochondria tethering are a common hallmark of many neurodegenerative diseases including Parkinson's disease. Here, we summarize the current knowledge on the involvement of PINK1 and Parkin at the ER-mitochondria contact sites and their role in the modulation of Ca2+ signalling and mitophagy

    Interaction Between Dietary Lipid Level and Seasonal Temperature Changes in Gilthead Sea Bream Sparus aurata: Effects on Growth, Fat Deposition, Plasma Biochemistry, Digestive Enzyme Activity, and Gut Bacterial Community

    Get PDF
    A 121-day feeding trial was undertaken to test the effects of two dietary lipid levels (16 and 21% L16, L21) in triplicated gilthead sea bream groups (initial weight: 67.5 g) reared at two different water temperatures (high, H 23°C and low, L 17°C) in the same recirculation system but exposed to a switch in temperature after 58 days. Fish kept at H were transferred to L (HL transition, autumn shift), and the fish kept at L were exposed to H (LH transition, summer shift), while continuing to receive the same diet to apparent satiation in each group. At the end of the trial, no significant diet effect on specific growth rate (SGR), feed intake (FI), and feed conversion rate (FCR) were detected in fish exposed to HL transition compared with those exposed to LH transition, while gross lipid efficiency (GLE) and lipid efficiency ratio (LER) were higher in L16. After temperature changes, L16 displayed higher SGR, FI, GLE, and LER, while mesenteric fat index was reduced. After temperature changes, the combined effects of low lipid diet and low temperature conditions resulted in higher pepsin activity, while trypsin, chymotrypsin, and lipase activities were generally higher at high lipid content. The combined effect of diet and temperature did not alter the metabolic plasma profile, except for the observed final higher aspartate aminotransferase (AST) and alkaline phosphatase (ALP) values when combining high dietary lipid (L21) and temperature changes. Different diets showed a significantly different gut microbiome layout, only at high temperature with L16 diet resulting in a higher load of Lactobacillus. On the contrary, no dietary impact on ecosystem diversity was observed, independently from the temperature. In addition, L16 diet in the HL transition favored an increase in Weissella and Bradyrhizobium genera in the gut microbiome, while in the final condition of LH transition, L21 diet favored a significant increase in Streptococcus and Bacillus. According to the results, the utilization of 16% dietary lipid levels in gilthead sea bream should be preferred during seasonal temperature changes in order to optimize feed utilization and gut health

    A split-GFP tool reveals differences in the sub-mitochondrial distribution of wt and mutant alpha-synuclein

    Get PDF
    Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by dopaminergic neuronal loss that initiates in the substantia nigra pars compacta and by the formation of intracellular inclusions mainly constituted by aberrant \u3b1-synuclein (\u3b1-syn) deposits known as Lewy bodies. Most cases of PD are sporadic, but about 10% are familial, among them those caused by mutations in SNCA gene have an autosomal dominant transmission. SNCA encodes \u3b1-syn, a small 140-amino acids protein that, under physiological conditions, is mainly localized at the presynaptic terminals. It is prevalently cytosolic, but its presence has been reported in the nucleus, in the mitochondria and, more recently, in the mitochondria-associated ER membranes (MAMs). Whether different cellular localizations may reflect specific \u3b1-syn activities is presently unclear and its action at mitochondrial level is still a matter of debate. Mounting evidence supports a role for \u3b1-syn in several mitochondria-derived activities, among which maintenance of mitochondrial morphology and modulation of complex I and ATP synthase activity. \u3b1-syn has been proposed to localize at the outer membrane (OMM), in the intermembrane space (IMS), at the inner membrane (IMM) and in the mitochondrial matrix, but a clear and comparative analysis of the sub-mitochondrial localization of WT and mutant \u3b1-syn is missing. Furthermore, the reasons for this spread sub-mitochondrial localization under physiological and pathological circumstances remain elusive. In this context, we decided to selectively monitor the sub-mitochondrial distribution of the WT and PD-related \u3b1-syn mutants A53T and A30P by taking advantage from a bimolecular fluorescence complementation (BiFC) approach. We also investigated whether cell stress could trigger \u3b1-syn translocation within the different mitochondrial sub-compartments and whether PD-related mutations could impinge on it. Interestingly, the artificial targeting of \u3b1-syn WT (but not of the mutants) to the mitochondrial matrix impacts on ATP production, suggesting a potential role within this compartment

    Uptake-release by MSCs of a cationic platinum(II) complex active in vitro on human malignant cancer cell lines

    Get PDF
    In this study, the in vitro stability of cisplatin (CisPt) and cationic platinum(II)-complex (caPt(II)-complex) and their in vitro activity (antiproliferative and anti-angiogenic properties) were investigated against three aggressive human tumor cell lines. caPt(II)-complex shown a high stability until 9 days of treatment and displayed a significant and higher activity than CisPt against both NCI-H28 mesothelioma (19.37 \ub1 9.57 \u3bcM versus 34.66 \ub1 7.65 \u3bcM for CisPt) and U87 MG glioblastoma (19.85 \ub1 0.97 \u3bcM versus 54.14 \ub1 3.19 for CisPt). Mesenchymal Stromal Cells (AT-MSCs) showed a significant different sensitivity (IC50=71.9 \ub1 15.1 \u3bcM for caPt(II)-complex and 8.7 \ub1 4.5 \u3bcM for CisPt) to the antiproliferative activity of caPt(II)-complex and CisPt. The ability of MSCs to uptake both the drugs in a similar amount of 2.49 pM /cell, suggested a possible development of new therapies based on cell mediated drug delivery

    Identification and molecular characterization of allergenic nsLTP from durum wheat (Triticum turgidum)

    Get PDF
    Background: Common wheat (Triticum aestivum) and durum wheat (T. turgidum) are both involved in Baker's asthma (BA) and food allergy (FA) including wheat-dependent exercise-induced asthma (WDEIA). However, allergens in durum wheat have not been described, and the over-expression of T. turgidum non-specific lipid-transfer protein (nsLTPs) is considered to increase resistance to phytopathogens. Objective: To identify and assess the allergenicity of nsLTP from T. turgidum. Methods: Recombinant T. turgidum nsLTP Tri tu 14 was generated and tested for structural integrity (circular dichroism-spectroscopy) and purity (SDS-PAGE). Thirty-two wheat allergic patients were enrolled: 20 Spanish patients (BA) with positive bronchial challenge to wheat flour, and 12 Italian patients (wheat FA/WDEIA) with positive double-blind placebo-controlled food challenge/open food challenge (OFC) to pasta. IgE values to wheat, Tri tu 14, Tri a 14 (T. aestivum) and Pru p 3 (P. persica) were determined by ImmunoCAP testing. Allergenic potency (in vitro mediator release) and IgE cross-reactivity were investigated. Results: Tri tu 14 was found to share 49% and 52% amino acid identity with Tri a 14 and Pru p 3, respectively. Among 25 Tri a 14 CAP positive sera, 23 (92%) were reactive to wheat extract, 22 (88%) to Tri tu 14 and 20 (80%) to Pru p 3. The correlation between Tri a 14 and Tri tu 14 specific IgE levels was r = 0.97 (BA) and r = 0.93 (FA/WDEIA), respectively. FA/WDEIA patients showed higher specific IgE values to Tri tu 14 and Pru p 3 than BA patients. Tri tu 14 displayed allergenic activity by mediator release from effector cells and IgE cross-reactivity with Pru p 3. The degree of IgE cross-reactivity between the two wheat nsLTPs varied between individual patients. Conclusions and Clinical Relevance: Sensitization to Tri tu 14 likely appears to be more important in wheat FA/WDEIA than in BA. Over-expression of Tri tu 14 in wheat would represent a risk for patients with nsLTP-mediated FA

    Human adipose-derived stem cells isolated from young and elderly women : their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation

    Get PDF
    Background aims Several authors have demonstrated that adipose tissue contains multipotent cells capable of differentiation into several lineages, including bone, cartilage and fat. Methods This study compared human adipose-derived stem cells (hASC) isolated from 26 female donors, under 35 and over 45 years old, showing differences in their cell numbers and proliferation, and evaluated their in vitro adipocytic and osteoblastic differentiation potential. Results The cellular yield of hASC from older donors was significantly greater than that from younger donors, whereas their clonogenic potential appeared slightly reduced. There were no significant discrepancies between hASC isolated from young and elderly women regarding their in vitro adipocytic differentiation, whereas the osteoblastic potential was significantly reduced by aging. We also assessed the influence of hydroxyapatite (HAP) and silicon carbide (SiC-PECVD) on hASC. Even when cultured on scaffolds, hASC from younger donors had better differentiation into osteoblast-like cells than hASC from older donors; their differentiation ability was up-regulated by the presence of HAP, whereas SiC-PECVD produced no significant effect on hASC osteoblastic differentiation. Conclusions The large numbers of hASC resident in adipose tissue and their differentiation features suggest that they could be used for a successful bone regeneration process in vivo. We have shown that age does not seem to affect cell viability and in vitro adipocytic differentiation significantly, whereas it does affects osteoblastic differentiation, in the absence and presence of two-dimensional and three-dimensional scaffolds
    • …
    corecore