76 research outputs found

    Reprogramming the antigen specificity of B cells using genome-editing technologies

    Get PDF
    We have developed a method to introduce novel paratopes into the human antibody repertoire by modifying the immunoglobulin (Ig) genes of mature B cells directly using genome editing technologies. We used CRISPR-Cas9 in a homology directed repair strategy, to replace the heavy chain (HC) variable region in B cell lines with that from an HIV broadly neutralizing antibody (bnAb), PG9. Our strategy is designed to function in cells that have undergone VDJ recombination using any combination of variable (V), diversity (D) and joining (J) genes. The modified locus expresses PG9 HC which pairs with native light chains (LCs) resulting in the cell surface expression of HIV specific B cell receptors (BCRs). Endogenous activation-induced cytidine deaminase (AID) in engineered cells allowed for Ig class switching and generated BCR variants with improved HIV neutralizing activity. Thus, BCRs engineered in this way retain the genetic flexibility normally required for affinity maturation during adaptive immune responses. Peripheral blood derived primary B cells from three different donors were edited using this strategy. Engineered cells could bind the PG9 epitope and sequenced mRNA showed PG9 HC transcribed as several different isotypes after culture with CD40 ligand and IL-4

    Crop Updates 2000 Cereals - part 4

    Get PDF
    This session covers twelve papers from different authors: BREEDING 1.Response to subsoil acidity of wheat genotypes differing in Al-tolerance, C. Tang, Z. Rengel, E. Diatloff and B. McGann, Soil Science and Plant Nutrition/CLIMA, University of Western Australia 2. Application of molecular markers in Barley Improvement, Mehmet Cakir1, Nick Galwey1 and David Poulsen2, 1Plant Sciences, Faculty of Agriculture, University of Western Australia, 2Queensland Department of Primary Industries, Hermitage Research Station, Queensland 3. Implementation of molecular markers for wheat improvement in the Western Region, M. Carter1, A. Briney1, R. Wilson2, R.H. Potter1 and M.G.K. Jones1, 1Western Australian State Agricultural Biotechnology Centre, Murdoch University, 2Crop Industries, Agriculture Western Australia 4. Performance in 1999 of recently released wheat varieties in Western Australia, Robin Wilson, Iain Barclay, Robyn McLean, Dean Diepeveen and Robert Loughman, Agriculture Western Australia ECONOMICS 5. Outlook for prices and implications for rotations, Ross Kingwell1 2, Michael O’Connell1, Simone Blennerhasset1 1Agriculture Western Australia, 2University of Western Australia 6. Price Risk Management and the Western Australian Grain Producer, Benjamin Michael Tiller, Muresk Institute of Agriculture FORECASTING 7. Can we forecast wheat yields in Western Australia, Senthold Asseng1, Holger Meinke2, and Bill Bowden3, 1CSIRO Plant Industry, 2 APSRU/DPI, 3Agriculture Western Australia ON FARM TESTING 8. On-farm testing, the quiet revolution continues, Jeff Russell1, Ivan Lee2 1Agriculture Western Australia, 2 Farmer Kunjin TopCrop group, Corrigin GRAIN STORAGE 9. CD-ROM tool for growers and advisers: Managing on-farm grain storage – effective practices for the delivery of quality assured products, Clare Johnson1, Chris Newman2 1Quality Wheat CRC Ltd, 2Production Resource Protection Services, Agriculture Western Australia 10. The Internet as a tool for managing grain insects, Robert Emery, Romolo Tassone and Ernestos Kostas, Agriculture Western Australia SUMMER CROPS AND WINDBREAK EFFECT ON YIELD 11. Summer crop Update and agronomic considerations, Graeme Ralph, Pioneer Hi-Bred Australia Pty Ltd 12. The effect of tree windbreaks on grain yield in the medium and low rainfall areas in Western Australia, Robert Sudmeyer, David Hall and Harvey Jones, Agriculture Western Australi

    Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause deadly disease

    Get PDF
    Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines

    Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies.

    Get PDF
    CAPRISA, 2014.Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development

    Big Data and Chemical Education

    No full text
    corecore