
Developmental pathway for potent V1V2-directed HIV-
neutralizing antibodies

Nicole A. Doria-Rose1,*, Chaim A. Schramm2,*, Jason Gorman1,*, Penny L. Moore3,4,5,*, 
Jinal N. Bhiman3,4, Brandon J. DeKosky6, Michael J. Ernandes1, Ivelin S. Georgiev1, Helen 
J. Kim7,8,9, Marie Pancera1, Ryan P. Staupe1, Han R. Altae-Tran1, Robert T. Bailer1, Ema T. 
Crooks10, Albert Cupo11, Aliaksandr Druz1, Nigel J. Garrett5, Kam H. Hoi12, Rui Kong1, 
Mark K. Louder1, Nancy S. Longo1, Krisha McKee1, Molati Nonyane3, Sijy O’Dell1, Ryan S. 
Roark1, Rebecca S. Rudicell1, Stephen D. Schmidt1, Daniel J. Sheward13, Cinque Soto1, 
Constantinos Kurt Wibmer3,4, Yongping Yang1, Zhenhai Zhang2, NISC Comparative 
Sequencing Program14, James C. Mullikin14,15, James M. Binley10, Rogier W. Sanders16, 
Ian A. Wilson7,8,9,17, John P. Moore11, Andrew B. Ward7,8,9, George Georgiou6,12,18, 
Carolyn Williamson5,13, Salim S. Abdool Karim5,19, Lynn Morris3,4,5,#, Peter D. Kwong1,#, 
Lawrence Shapiro1,2,#, and John R. Mascola1,#

1Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National 
Institutes of Health, Bethesda, Maryland 20892 USA 2Department of Biochemistry, Columbia 
University, New York, NY 10032 USA 3Center for HIV and STIs, National Institute for 
Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 
South Africa 4University of the Witwatersrand, Johannesburg, South Africa 5Centre for the AIDS 
Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South 
Africa 6Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA 
7Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 

Reprints and permissions information is available at www.nature.com/reprints
#Correspondence and requests for materials should be addressed for CAPRISA and viral evolution to LM (lynnm@nicd.ac.za), for 
crystallography to PDK (pdkwong@nih.gov), for NGS to LS (lss8@columbia.edu), and for isolated antibodies to JRM 
(jrmascola@nih.gov).
*These authors contributed equally to this work.

Author Contributions
N.D.-R., C.A.S., J.G., and P.L.M. contributed equally to this work. N.D.-R., C.A.S., J.G., P.L.M., and J.N.B., designed and performed 
experiments, analyzed data, and wrote the manuscript. L.M., P.D.K., L.S.S., and J.R.M. conceived and designed the experiments, 
analyzed data, and wrote the manuscript. B.D.K., M.J.E., I.S.G, H.J.K., M.P., and R.P.S. conducted experiments and analyzed data. 
H.R.A.-T., B.T.B., E.T.C., A.C., K.H.H., R.K., M.K.L., K.M., M.N., S.O., Ry.S.R., Re.S.R., S.D.S., C.K.W., Y.Y., J.C.M., and NISC 
conducted experiments. C.W. and A.D. contributed analysis tools and data analysis. S.A.K. and N.J.G conceived and managed the 
CAPRISA cohorts. J.M.B., R.W.S., I.A.W., J.P.M., A.B.D., G.G., N.S.L., D.J.S., C.S., and Z.Z. analyzed data.

Coordinates and structure factors for CAP256-VRC26 lineage Fabs have been deposited with the Protein Data Bank under accession 
codes 4ODH, 4OCR, 4OD1, 4ODO, 4OCW, 4OD3, and 4OCS. The EM reconstruction density for the CAP256-VRC26.09 complex 
with BG505 SOSIP.664 trimer has been deposited with the Electron Microscopy Data Bank under accession code EMD-5856. We 
have also deposited deep sequencing data used in this study to National Center for Biotechnology Information Short Reads Archives 
(SRA) under accession numbers SRP034555 and SRP017087. Information deposited with GenBank includes: the heavy- and light-
chain variable region sequences of cloned antibodies CAP256-VRC26.01-12, UCA, I1 and I2 (accession numbers KJ134860-
KJ134889); bioinformatically identified VRC26-related sequences from B cell transcripts: 680 heavy chains and 472 light chains 
(accession numbers KJ133708 - KJ134387, KJ134388 - KJ134859); and CAP256 Env sequences (accession numbers KF996576 – 
KF996716).

The authors declare no competing financial interests.

Readers are welcome to comment on the online version of this article at www.nature.com/nature.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2015 April 13.

Published in final edited form as:
Nature. 2014 May 1; 509(7498): 55–62. doi:10.1038/nature13036.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



La Jolla, California, 92037 USA 8Center for HIV/AIDS Vaccine Immunology and Immunogen 
Discovery, The Scripps Research Institute, La Jolla, California, 92037 USA 9IAVI Neutralizing 
Antibody Center, The Scripps Research Institute, La Jolla, California, 92037 USA 10Torrey Pines 
Institute, San Diego, CA 92037 USA 11Weill Medical College of Cornell University, New York, NY 
10021 USA 12Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 
USA 13Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, 
University of Cape Town and NHLS, Cape Town, South Africa 14NISC Comparative Sequencing 
program, NIH, Bethesda, MD 20892 USA 15NIH Intramural Sequencing Center (NISC), National 
Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA 
16Department of Medical Microbiology, Academic Medical Center, Amsterdam Netherlands 
17Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 
92037, USA 18Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 
USA 19Department of Epidemiology, Columbia University, New York, NY, USA

Summary

Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the 

HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the 

developmental pathway by which such antibodies are generated and acquire the requisite 

molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies 

(CAP256-VRC26.01-12) were isolated from CAPRISA-donor CAP256; each antibody contained 

the protruding tyrosine-sulfated, anionic antigen-binding loop (CDR H3) characteristic of this 

category of antibodies. Their unmutated ancestor emerged between weeks 30–38 post-infection 

with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks 

after initial infection. Improved neutralization breadth occurred by week 59 with modest affinity 

maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-

directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B 

cells with a long CDR H3, and limited subsequent somatic hypermutation, an important vaccine 

insight.

Developmental pathways of antibodies that neutralize HIV-1 represent potential templates to 

guide vaccine strategies, if their constituent molecular events were understood and could be 

reproduced1–3. Virtually all HIV-1 infected individuals mount a potent antibody response 

within months of infection, but this response preferentially neutralizes autologous virus, 

which rapidly escapes4,5. Cross-reactive antibodies capable of neutralizing most HIV-1 

strains arise in only ~20% of donors after 2–3 years of infection6–9. An understanding of the 

development of broadly neutralizing antibody (NAb) lineages in such donors could provide 

a roadmap for vaccine design.

One means to obtain such a roadmap is through isolation of broadly cross-reactive NAbs, 

characterization of their genetic sequence and molecular properties, and examination of the 

B cell genetic record with next-generation sequencing (NGS)10–14. The greatest insight can 

be gained with longitudinal sampling from early after the time of HIV-1 infection15. This 

allows for a genetic delineation of the molecular evolution leading from an unmutated 
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ancestor antibody through affinity maturation to acquisition of neutralization breadth. In 

principle, such a roadmap should link antibody molecular characteristics to the genetic 

development that a successful vaccine would retrace.

NAbs to the V1V2 region of the HIV-1 viral spike are among the most prevalent cross-

reactive antibodies elicited by natural infection6,16–18 and have been isolated from several 

donors19–21. These antibodies have long heavy-chain complementarity-determining region 3 

loops (CDR H3s) that are protruding, anionic, and often tyrosine sulfated22,23. These CDR 

H3s penetrate the HIV-1 glycan shield, recognizing a quaternary glycopeptide epitope at the 

apex of the HIV-1 spike that is formed by V1V2s from at least two gp120 protomers22–24. 

Here we employ antibody isolation, B-cell NGS, structural characterization, and viral single-

genome analysis (SGA) to delineate longitudinal interactions between the developing 

antibody and autologous virus within donor CAP256, who showed evidence of V1V2-

mediated neutralization breadth after one year18,25,26. Our results define the molecular 

requirements and genetic pathways that lead to V1V2-directed neutralization, providing a 

template for their vaccine elicitation.

Antibody isolation and characterization

Donor CAP256 peripheral blood mononuclear cells (PBMCs) sampled 59, 119 and 206 

weeks post-infection were used to isolate 12 monoclonal antibodies by high-throughput B 

cell culture, functional screening by microneutralization, and reverse transcription-PCR of 

antibody variable regions27,28 (Fig. 1a). All 12 were somatically related and distinguished 

by long CDR H3s of 35–37 amino acids (Kabat29 numbering) (Fig. 1b, Extended Data Fig. 

1a). The heavy and light chains exhibited somatic mutation of 4–15% from their germline-

encoded V-genes, VH3-30 and Vλ1-51, respectively (Extended Data Fig. 1 and Extended 

Data Table 1). When these antibodies were reconstituted as IgG1s, they showed varying 

degrees of heterologous virus neutralization and were extremely potent against many 

subtype A and C strains (Fig. 1b–c, Extended Data Fig. 2, and Supplementary Fig. 1). 

Importantly, the combination of all 12 antibodies recapitulated plasma neutralization 

(Supplementary Fig. 2), indicating the CAP256-VRC26 antibody lineage to be responsible 

for the neutralization breadth and potency of donor CAP256.

To map the epitope of the CAP256-VRC26 antibodies, we employed neutralization 

fingerprints18; binding assays for HIV-1 Envelope (Env) in soluble, cell surface30, and viral 

particle31 contexts; and negative stain electron microscopy (EM) of Fab CAP256-VRC26.09 

bound to a soluble cleaved version of the HIV-1 spike24,32,33 (Fig. 2a–c, Supplementary Fig. 

3, Extended Data Figs. 3–4). Recognition of Env by CAP256-VRC26 antibodies was similar 

to PG9-class NAbs that recognize the trimeric V1V2 cap24, with high specificity for the Env 

native quaternary conformation and one Fab bound per trimer (Fig. 2c, left and Extended 

Data Fig. 4). Neutralization activity of CAP256-VRC26 antibodies was reduced or knocked 

out by Env mutations in V1V2 strands B and C (Fig. 2d), much like the CAP256 plasma25,26 

and PG9-class NAbs22,23,34; though unlike PG9, the CAP256-VRC26 antibodies were only 

partially and variably sensitive to loss of glycans at N160 and N156 (Fig. 2d and Extended 

Data Fig. 5). Overall, these data indicated the epitope to be at the membrane-distal apex of 
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the HIV-1 spike close to the trimer axis (Fig. 2e), providing a structural explanation for the 

observed quaternary specificity.

Origin and development of the lineage

To obtain a genetic record of the CAP256-VRC26 antibody lineage, we analyzed B cell-

immunoglobulin transcripts at eight time points between 15 and 206 weeks post-infection by 

454 pyrosequencing. Although no CAP256-VRC26 lineage-related transcripts were detected 

at 15 and 30 weeks, related heavy chain and light chain transcripts were found at all later 

time points (Fig. 3a). To track longitudinal prevalence, we utilized identity-divergence plots 

of all heavy chain reads assigned to the same VH3-30 germline gene as the isolated 

antibodies. Using CAP256-VRC26.01 or CAP256-VRC26.08 as the identity referents, 

segregated islands of related heavy chain sequences first appeared at week 38 (Fig. 3b). For 

all 12 antibodies, the prevalence and identity of related sequences peaked close to the time 

of the antibody isolation (Supplementary Fig. 4). To obtain additional antibody lineage data, 

we performed linked VH:VL paired sequencing35 at five time points (Fig. 3a and 

Supplementary Table 1). Of 157 unique CAP256-VRC26 pairs, 7 matched either heavy or 

light chain sequences present in the 454 pyrosequencing data, including 2 for which both 

heavy and light chain sequences had previously been captured (Fig. 3c).

Maximum-likelihood phylogenetic trees were constructed using the isolated antibodies and 

the 454 data (Fig. 3c). The lineage bifurcates early, with one branch leading to CAP256-

VRC26.01 and a second developing into CAP256-VRC26.02-12. The unmutated common 

ancestors (UCAs) for the heavy and light chain were inferred from the phylogenetic trees 

(Fig. 3c). For the light chain, the UCA had a 12-residue CDR L3, as in CAP256-VRC26.01, 

and for the heavy chain, the inferred UCA had a 35-residue CDR H3 (Extended Data Fig. 6), 

likely the result of VDJ recombination with a single D-gene, IgHD3-3*01 and N-nucleotide 

insertions of 34 and 31 nucleotides at each junction (Supplementary Fig. 5). This inferred 

UCA was further supported by the identification of many low-divergence sequences in week 

38 heavy chain data, five of which had only two amino acid differences from the inferred 

UCA (Extended Data Fig. 6). Thus, the longitudinal NGS analysis established the first 

appearance of the CAP256-VRC26 lineage; defined the UCA, the product of gene 

recombination in the ancestor B cell of the lineage; and provided a genetic record of the 

development of this lineage over four years.

Structures of CAP256-VRC26 antibodies

To define the structural characteristics of CAP256-VRC26 lineage development, we 

determined crystal structures for Fabs of the UCA and six antibodies from weeks 59, 119 

and 206 (Fig. 4, Supplementary Table 2, and Supplementary Fig. 6a). The mature CDR H3s 

protruded ~20Å above the antigen-combining surface of the heavy chain and contained a 2-

stranded β-sheet, O-sulfated tyrosines, and an intra-CDR H3 disulfide bond (Fig. 4a–b). The 

CDR H3s of the UCA and CAP256-VRC26.01 lacked a CDR H3 disulfide bond, exhibited 

greater disorder, and were positioned more proximal to the light chain (Fig 4c); the 

appearance of the disulfide bond correlated with adoption of the mature CDR H3 orientation 

(Fig 4c, Supplementary Fig. 6b, and Extended Data Fig. 7a). Mutation to remove the 
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relevant Cys residues in VRC26.03 resulted in loss of neutralization potency and breadth 

(Extended Data Fig. 7b–c). Additionally, the appearance of CDR H3 cysteines coincided 

with a glycine to arginine mutation at the base of the CDR H3, possibly limiting flexibility 

of the mature antibodies (Extended Data Fig. 7a–b and Supplementary Fig. 7). Overall, the 

CAP256-VRC26 lineage begins with an anionic protruding CDR H3 with structural 

properties similar to previously determined V1V2-directed broadly NAbs. Development 

over four years involves the introduction of almost 20 light chain and over 30 heavy chain 

mutations, including a disulfide bond. The CDR H3 changes its overall orientation while 

losing negative charge and maintaining tyrosine sulfation (Fig. 4b–c, right).

HIV Env evolution during NAb development

To gain insight into the temporal HIV-1 Env changes driving the development of the 

CAP256-VRC26 lineage, we used SGA to determine viral sequences over ~3 years. 

CAP256 Env sequences showed high levels of diversity driven, in part, by recombination 

between the superinfecting virus (SU) that was first detected 15 weeks post-infection, and 

the primary infecting virus (PI)26 (Fig. 5a, Supplementary Figs. 8, 9). Differences between 

the PI and SU Env sequences included V2 residues 165 and 169, and an N160 glycan in the 

SU that was not present in the PI (Fig 5b, Extended Data Fig. 8a–b). Notably, compared to 

the PI, the SU contained V2 residues that are more commonly found among circulating 

viruses (Extended Data Fig 8a). All 12 antibodies neutralized the SU, and, with the 

exception of CAP256-VRC26.06, failed to neutralize the PI, suggesting the SU V1V2 

initially engaged the naive B cell of the CAP256-VRC26 lineage (Fig. 5d, Extended Data 

Fig. 8c, and Supplementary Fig. 10).

Before the CAP256-VRC26 antibodies developed, most Env sequences had V1V2 regions 

derived from the PI (Fig. 5a–c and Supplementary Fig. 8–9) and were therefore largely 

neutralization resistant (Fig. 5d and Supplementary Fig. 10). Among SU-like sequences, a 

rare K169I mutation arose under strong directional selection (Supplementary Table 3) as the 

CAP256-VRC26 lineage emerged and rendered the SU resistant to only the earliest antibody 

(Extended Data Fig. 8d–e), suggesting that CAP256-VRC26.01-like antibodies drove this 

viral escape, followed by maturation of the lineage to tolerate I169. At 48 weeks, the viral 

population underwent a significant shift (Fig 5a and Supplementary Figs. 8–9), with the SU-

like V1V2 dominating just prior to the development of neutralization breadth. Neutralization 

of Env clones by later antibodies (CAP256-VRC26.02-12) tracked with the presence of SU-

like V1V2 sequences (black bar, Fig 5c) until escape occurred through mutations at 

positions 166 or 169 (Fig. 5c–d, Extended Data Figs. 8d). These mutations resulted in a net 

charge change in the V2 epitope (+3 to 0, Fig. 5c, Extended Data Fig. 8b) concomitant with 

the antibody CDR H3s becoming less acidic over time (−10 to −4, Fig. 4 and Extended Data 

Fig. 9) suggesting co-evolution of the viral epitope and the antibody paratope. Overall, these 

results highlight the interplay between virus and antibody, with the SU-like V1V2 epitope 

stimulating expansion of the CAP256-VRC26 lineage.
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Rapid development of CAP256-VRC26.01

To gain insight into the development of V1V2-directed neutralization, we focused on the 

early antibody CAP256-VRC26.01, isolated at week 59, which neutralized 30% of clade C 

viruses and showed cross-clade neutralization of nearly 20% (Supplementary Fig 1). 

Notably, this week 59 time point was 44 weeks after superinfection and only 21 weeks after 

the CAP256-VRC26 lineage was first detected by NGS. We also inferred heavy and light 

chains for two developmental intermediates (VRC26-I1 and VRC26-I2) (Fig. 6a and 

Extended Data Fig. 1) and characterized their function along with the UCA (Fig. 6b–e): The 

UCA bound and neutralized the SU weakly, but did not bind nor neutralize heterologous 

viruses. VRC26-I1, VRC26-I2 and CAP256-VRC26.01 demonstrated progressively greater 

binding and neutralization, with VRC26-I1 neutralizing 2 of 7 strains and VRC26-I2 

neutralizing 6 of 7 strains (Fig 6e), with dependence on residues in V2 (Fig 6c). 

Interestingly, the PI was neither bound nor neutralized by the UCA, intermediates, or 

CAP256-VRC26.01 (Fig 6c and Supplementary Fig 11). These data provide further 

evidence that the CAP256-VRC26 lineage was initiated by interaction with an SU-like 

V1V2. Subsequent affinity maturation, focused in CDR H3 (Fig. 6f and Extended Data 

Table 1), allowed for progressively greater binding and neutralization with increased viral 

diversity preceding the emergence of neutralization breadth. Based on the inferred UCA, 

CAP256-VRC26.01 diverged 11% from germline heavy chain and 7% from germline light 

chain (Fig. 6f). Thus, once an appropriate gene recombination allows for B-cell receptor 

recognition of the trimeric V1V2 epitope, development of cross-reactive neutralization can 

be achieved with moderate somatic mutation in a matter of months.

Vaccine implications

The V1V2 region of HIV-1 is a common target of serum NAbs6,16–18. In the RV144 Thai 

vaccine trial, an increased level of binding antibodies to the V1V2 region was associated 

with a reduced risk of infection36 and viral sieve analysis showed immune pressure in the 

same region37. While the vaccine in the RV144 trial did not elicit broadly neutralizing 

V1V2-directed antibodies similar to those described here and elsewhere19–21, a more 

effective vaccine would ideally elicit cross-reactive NAbs 1–3,38. Previously described V1V2 

antibodies, and the CAP256-VRC26 lineage, all have long CDR H3 regions that are 

necessary to penetrate the glycan shield and engage a V1V2 epitope (Extended Data Table 

1). An important unanswered question has been whether these long CDR H3s are fully 

formed by VDJ recombination, as has been seen in HIV-uninfected donors39, or emerge by 

insertions during the process of affinity maturation. We show here that the 35-residue CDR 

H3 of the CAP256-VRC26 UCA was produced during initial gene rearrangement and 

therefore existed at the level of the naive B cell receptor.

A potential rate-limiting developmental step in the CAP256-VRC26 lineage is the gene 

rearrangement that generated its UCA. By one estimate, human B cells with recombined 

antibody genes encoding long (≥ 24aa, IMGT40 definition) or very long (≥28aa) CDR H3s 

constitute ~3.5% and 0.4%, respectively, of naïve B cells39. These long B cell receptors 

have been associated with autoreactivity, and are subject to both central and peripheral 

deletion, resulting in an even smaller population of IgG+ memory B cells39,41. We therefore 
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tested the UCA and all 12 CAP256-VRC26 cloned antibodies for autoreactivity42. The UCA 

and mature CAP256-VRC26 antibodies demonstrated little or no reactivity on Hep2 cells or 

with cardiolipin (Extended Data Fig. 6b–c). In addition, NGS of CAP256 peripheral B cells 

indicated that <0.4% of sequences had CDR H3s of ≥28aa (Extended Data Fig. 6d) 

suggesting that this donor did not have an unusually high frequency of clonal lineages with 

long CDR H3 regions.

We also inferred the virological events leading to the stimulation and evolution of the 

CAP256-VRC26 lineage by the superinfecting virus. Similar to the CH103 CD4-binding site 

lineage in donor CH50515, the autologous virus in CAP256 showed extensive diversification 

prior to the development of breadth. Subsequent antibody-virus interactions appeared to 

drive somatic mutation and development of cross-reactive neutralization. Finally, the 

ontogeny of V1V2-directed NAbs revealed by the CAP256-VRC26 lineage suggests that 

neutralization potency and breadth can be achieved without extraordinary levels of somatic 

hypermutation. While some NAbs appear to require years of maturation1,3,43,44, we show 

that a V1V2-directed B cell lineage can acquire HIV-1 neutralization breadth within months 

rather than years. The critical event appears to be an uncommon gene rearrangement that 

produces a B-cell receptor with protruding, tyrosine-sulfated, anionic CDR H3. Identifying 

features of antigens able to engage naive B cells with such CDR H3s is a critical step in 

design of vaccines targeting V1V2. Such antigens could be screened for binding to the UCA 

versions of NAbs as an indicator of the ability to engage an appropriate naïve B cell 

receptor. This work also suggests that although an appropriate trimeric V1V2 construct may 

elicit neutralizing V1V2 antibodies, sequential immunogens that mirror viral evolution may 

be needed to drive the development of breadth. Overall, the precise delineation of the 

developmental pathway for the CAP256-VRC26 lineage should provide a basis for attempts 

to elicit broad V1V2-directed HIV-1-neutralizing antibodies.

Full Methods

Study subject

CAPRISA participant CAP256 was enrolled into the CAPRISA Acute Infection study 51 

that was established in 2004 in KwaZulu-Natal, South Africa for follow-up and subsequent 

identification of HIV seroconversion. CAP256 was one of the 7 women in this cohort who 

developed neutralization breadth 6. The CAPRISA 002 Acute Infection study was reviewed 

and approved by the research ethics committees of the University of KwaZulu-Natal 

(E013/04), the University of Cape Town (025/2004), and the University of the 

Witwatersrand (MM040202). CAP256 provided written informed consent for study 

participation. Samples were drawn between 2005–2009.

Isolation and expression of CAP256-VRC26 family genes

PBMC isolated from CAP256 blood draws at weeks 59, 119, and 206 were stained and 

sorted for IgG+ B cells on a FACS Aria II as described in 18. Cells were plated at 2 B cells/

well in 384 well plates and cultured for 14 days in the presence of IL-2, IL-21, and CD40L-

expressing irradiated feeder cells, as described in27,45. Culture supernatants were screened 

by microneutralization as described in52 against HIV-1 ZM53.12 and CAP45.G3 Env-
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pseudoviruses. Kappa and lambda light chain gene and IgG heavy chain gene variable 

regions were amplified from neutralization-positive wells, subcloned, expressed, and 

purified as described in 18. Heavy chains were reconstituted as IgG1. The efficiency of 

cloning was as follows. For week 59, 15000 B cells (7500 wells) were plated, 8.3% of wells 

produced IgG, 4 were positive in microneutralization, and one heavy-light chain pair was 

recovered. For week 119, 45000 B cells were plated, 48% of wells produced IgG, 49 wells 

were positive in microneutralization, and 8 heavy-light chain pairs were recovered. For 

week 206, 42000 B cells were plated, 29% of wells produced IgG, 34 wells were positive in 

microneutralization, and 3 heavy-light chain pairs were recovered.

The antibodies are numbered CAP256-VRC26.01-.12 in order of the timepoint of the 

sample from which they were isolated, and then the degree of heavy chain somatic mutation.

Neutralization assays

Single round of replication Env-pseudoviruses were prepared, titered, and used to infect 

TZM-bl target cells as described previously46,47. Neutralization breadth of CAP256-

VRC26.01, 03, .06, and .08 were determined using a previously described 18,53 panel of 194 

geographically and genetically diverse Env-pseudoviruses representing the major subtypes 

and circulating recombinant forms. The remaining antibodies were assayed on a subset of 

this panel. The data were calculated as a reduction in luminescence units compared with 

control wells, and reported as 50% inhibitory concentration (IC50) in in micrograms per 

microlitre for monoclonal antibodies, or reciprocal dilution (ID50) for plasma samples.

Neutralization fingerprints

Due to the high sequence variability of HIV-1 Env, different viral strains may exhibit 

different neutralization sensitivities to the same antibody, and this pattern of neutralization 

variation can be used to define the neutralization fingerprint for a given antibody. Namely, 

the neutralization fingerprint of an antibody is defined as the rank-order of neutralization 

potencies for the antibody against a set of diverse viral strains18.

The correlations between the neutralization fingerprints of the CAP256-VRC26 antibodies 

and the neutralization patterns of four longitudinal serum timepoints (at 59, 106, 159, and 

220 weeks post infection) were computed over a set of 29 HIV-1 strains (6535.3, AC10.29, 

CAAN.A2, CAP210.E8, CAP244.D3, CAP45.G3, DU156.12, DU172.17, DU422.01, PVO.

04, Q168.a2, Q23.17, Q259.d2.17, Q461.e2, Q769.d22, Q842.d12, QH0692.42, REJO.67, 

RHPA.7, SC422.8, THRO.18, TRJO.58, TRO.11, WITO.33, ZM109.4, ZM135.10a, 

ZM197.7, ZM233.6, ZM53.12) 18. The correlations between the neutralization potencies of 

the CAP256-VRC26 antibodies and a reference set of antibodies targeting the four major 

sites of vulnerability, with at most two antibodies per unique donor, were computed over a 

set of 41 HIV-1 strains (6535.3, 0260.v5.c36, 6405.v4.c34, AC10.29, C1080.c3, CAAN.A2, 

CAP210.E8, CAP244.D3, CAP45.G3, CNE3, DU156.12, DU172.17, DU422.01, 

KER2008.12, KER2018.11, MB201.A1, MB539.2B7, PVO.04, Q168.a2, Q23.17, Q259.17, 

Q461.e2, Q769.d22, Q842.d12, QH0692.42, REJO.67, RHPA.7, RW020.2, SC422.8, 

TH976.17, THRO.18, TRJO.58, TRO.11, UG037.8, WITO.33, ZM109.4, ZM135.10a, 

ZM197.7, ZM214.15, ZM249.1, ZM53.12). The correlations between the neutralization 
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patterns of the four longitudinal serum timepoints and the neutralization fingerprints of the 

reference antibodies were computed over a set of 28 HIV-1 strains (6535.3, AC10.29, 

CAAN.A2, CAP210.E8, CAP244.D3, CAP45.G3, DU156.12, DU172.17, DU422.01, PVO.

04, Q168.a2, Q23.17, Q259.17, Q461.e2, Q769.d22, Q842.d12, QH0692.42, REJO.67, 

RHPA.7, SC422.8, THRO.18, TRJO.58, TRO.11, WITO.33, ZM109.4, ZM135.10a, 

ZM197.7, ZM53.12). For the reference antibodies, data from multiple neutralization 

experiments was averaged and consolidated. All correlations are based on the Spearman 

rank coefficient.

Virus-like particle ELISA

VLP ELISAs were performed as described previously 31. Briefly, VLPs were produced by 

PEI-based cotransfection of 293T cells with a pCAGGS-based, Env-expressing plasmid and 

the Env-deficient HIV-1 genomic backbone plasmid pNL-LucR-E. VLPs were coated on 

ELISA wells at 20x the concentration in transfection supernatants. MAb binding was then 

assessed by ELISA, omitting detergent in PBS wash buffers and probing with an anti-human 

Fc alkaline phosphatase conjugate (Accurate, Westbury, NY) and SigmaFAST p-nitrophenyl 

phosphate tablets (Sigma). Plates were read at 405 nm.

Cell-surface Env Binding

293T cells were transiently transfected with plasmids encoding Env ZM53.12 or CAP256-

SU with deletions of the cytoplasmic tail 30. For binding experiments, after 2 days, the cells 

were stained with ViVid viability dye (Invitrogen) followed by serial dilutions of antibodies, 

two washes, then R-PE-conjugated F(ab) goat anti-human IgG specific for the Fc fragment 

(Jackson ImmunoResearch) at a 1:200 dilution54. For competition assays, the cells were 

stained with ViVid viability dye followed by biotinylated CAP256-VRC26.01 (10 μg/ml) or 

CAP256-VRC26.08 (0.8 μg/ml) premixed with serially diluted unlabeled competitor 

antibodies. After incubation and 2 washes, cells were stained with streptavidin-PE 

(Invitrogen) at 1:200 dilution. Cells were analyzed on a BD LSRII (Becton Dickinson). 

Binding was measured as the median fluorescence intensity (MFI) for each sample minus 

the MFI of cells stained with secondary antibody only.

Polyreactivity analysis of antibodies

Antibody binding to cardiolipin was determined as in 42. Briefly, using the QUANTA Lite 

ACA IgG III ELISA kit (Zeus Scientific) per manufacturer’s protocol, each antibody was 

diluted to 100 μg/ml in the kit sample diluent and tested in 3-fold serial dilutions. Results 

shown are representative of at least two independent ELISAs. Positive and negative controls 

were included on each plate, and values three times above background were considered 

positive. Antibody reactivity to a human epithelial cell line (HEp-2) was determined with 

the ANA/HEp-2 Cell Culture IFA Test System (Zeus Scientific) per manufacturer’s 

protocol, as described in42. Antibodies were diluted to 50 μg/ml and 25 μg/ml in ZOBRA-

NS diluent. Positive and negative controls were included on each slide. Antibodies were 

scored negative, indeterminate, or positive (1+ to 4+) at each dilution. Results are 

representative of at least two independent experiments.
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Electron Microscopy (EM) and Image Processing

VRC26.09 Fabs in complex with BG505 SOSIP.664 gp140 produced in HEK 293S cells 

were analyzed by negative stain EM. A 3 uL aliquot of ~8 ug/ml of the complex was applied 

for 15s onto a glow discharged, carbon coated 400 Cu mesh grid and stained with 2% uranyl 

formate for 20s. Grids were imaged using a FEI Tecnai T12 electron microscope operating 

at 120 kV using a 52,000 × magnification and electron dose of 25 e-/Å2, which resulted in a 

pixel size of 2.05 Å at the specimen plane. Images were acquired with a Tietz 4k × 4k CCD 

camera in 5° tilt increments from 0° to 50° at a defocus of 1000 nm using LEGINON55.

Particles were picked automatically by using DoG Picker and put into a particle stack using 

the Appion software package 56,57. Initial reference free 2D class averages were calculated 

using particles binned by 2 via the Xmipp Clustering 2D Alignment and sorted into 128 

classes58. Particles corresponding to the complexes were selected into a substack and 

another round of reference free alignment was carried out with unbinned particles using 

Xmipp Clustering 2D alignment and IMAGIC softwares 59. To generate an ab initio 3D 

starting model, a template stack of 44 images of 2D class averages was used without 

imposing symmetry. The resulting starting model was refined against 2D class averages for 

9 cycles and subsequently with 6,763 raw particles for 9 cycles using EMAN60. The 

resolution of the final reconstruction was calculated to be 28Å using an FSC cut-off value of 

0.5.

High-throughput sequencing

Amplicon for 454 next-generation sequencing was prepared as described 12,14 with slight 

modifications as indicated. Briefly, mRNA was prepared from 10–15 million PBMC using 

an Oligotex kit (Qiagen). cDNA was synthesized using Superscript II reverse transcriptase 

(Invitrogen) and oligo-dT(12–18) primers. Individual PCR reactions were performed with 

Phusion polymerase for 30 cycles. Primers (Supplementary Table 4) consisted of pools of 5–

7 oligonucleotides specific for all lambda gene families or VH3 family genes, and had 

adapters for 454 next generation sequencing. For week 176 only, heavy-chain PCR was 

performed with primers for all VH families, and mixed lambda and kappa primers were used 

for light chain (Supplementary Table 4). PCR products were gel-purified (Qiagen). 

Pyrosequencing of the PCR products was performed on a GSFLX sequencing instrument 

(Roche-454 Life Sciences, Bradford, CT, USA) on a half chip per reaction (full chips for 

week 176). On average, ~250,000 raw reads were produced.

High-throughput linkage of VH and VL transcripts was performed in single cell emulsions 

generated using a flow focusing apparatus35 (B.J.D., manuscript in preparation). CD27+ B 

cells were isolated from CAP256 PBMCs collected at 34, 48, 59, 69, and 119 weeks post-

infection by magnetic bead sorting (Miltenyi Biotec, Auburn, CA). Cells from weeks 34 and 

119 were divided in two groups and half of the cells were analyzed with FR1 primers35 

while the other half were analyzed with leader peptide primers41 (Supplementary Table 5). 

All other time points were analyzed in a single group using only FR1 primers 

(Supplementary Table 1). Overlap extension RT-PCR was performed as previously 

reported35, with extension time increased to 125 seconds. Nested PCR was performed as 

described previously with a 23-second extension time and PCR products were sequenced 
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using the Illumina 2×250 bp MiSeq platform. Raw reads were quality-filtered for an 

Illumina Q-score of 20 in 50% of bases. VRC26-class VH and paired VL sequences were 

identified via BLAST against CDR-H3 nucleotide sequences of the 12 culture-isolated 

antibodies.

Antibodyomics pipeline

Raw 454 data was processed using a pipeline implemented in Python, similar to one we 

reported previously 14. Briefly, reads were filtered for length, keeping only those between 

300 and 600 nucleotides. Germline V genes were then assigned to each read using BLAST 

with empirically optimized parameters. Reads for which no V gene match was found with an 

e-value ≤ 10-10 were discarded. For reads assigned to any VH3-30 or Vλ1-51 allele, (the 

CAP256-VRC26 germline genes), ClustalW2 61 was used to calculate the sequence identity 

to the germline and each isolated antibody. These data were plotted as density heat maps 

using ggplot2 in R to produce identity-divergence plots (Fig. 3b and Supplementary Fig. 4).

Finding clonally related sequences

Reads that were assigned to the same V genes as CAP256-VRC26, VH3-30 and Vλ1-51, 

were submitted to IMGT High-Vquest 62 (http://www.imgt.org/IMGTindex/IMGTHighV-

QUEST.html), and the results, including automated sequence corrections, were used to 

further sieve for lineage-related sequences. Reads assigned to J genes matching CAP256-

VRC26 (JH3 or Jλ1), and having similar divergence (+/− 15%) in the V and J genes, similar 

(+/− 10%) nucleotide and amino acid divergences in the V gene, and containing a 

continuous open reading frame throughout the entire variable region, were selected for 

further processing. Next, reads from all time points were pooled and clustered at 97.25% 

sequence identity (twice the standard deviation of expected 454 sequencing error) 14 using 

CDHit 63. For each cluster, a representative sequence was chosen from the earliest possible 

time point. The choice of cluster representatives from the earliest time points at which they 

appeared was critical to maintaining information on the chronology of lineage development 

in subsequent analyses. This procedure yielded 8,485 unique heavy chain and 6,410 unique 

light chain sequences.

To identify CAP256-VRC26 lineage-member heavy chains, we performed intra-donor 

phylogenetic analysis 14 on the unique 454 sequence set using the heavy chain sequences of 

the 12 isolated CAP256-VRC26 antibodies. 707 sequences were identified as likely lineage 

members, of which 27 were discarded after manual inspection, resulting in a total of 680 

unique CAP256-VRC26 lineage heavy chain sequences.

To identify light chain lineage members, a sieve requiring at least 92% sequence identity in 

CDR L3 to one of the isolated antibodies resulted in 495 sequences. Joinsolver 64 was used 

to examine the V-J junctions of these sequences in detail, to ensure that the recombination 

points matched those known for the isolated antibodies (Supplementary Fig. 5). This gave a 

total of 472 unique CAP256-VRC26 lineage light chain sequences.

Paired reads that were identified as members of the CAP256-VRC26 lineage were clustered 

using CDHit 63 at 95% sequence identity and consensus VH and VL sequences were 

generated for each cluster containing two or more pairs. Blast was then used to align the 
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resulting sequences to all clonally related sequences identified from the 454 sequencing as 

described above. Gapless alignments covering at least 190 nucleotides at 97% or greater 

sequence identity were considered to be matches. Two of the 157 paired sequences 

determined to be members of the CAP256-VRC26 lineage matched known CAP256-VRC26 

lineage sequences in both VH and VL 454 data sets. An additional 4 VH sequences and 1 

VL sequence were found in the 454 data, but their light or heavy chain partners were not 

present.

Computation of phylogenetic trees

Phylogenetic trees were constructed from 454 data and the sequences of antibodies isolated 

from B cell culture. Raw data is shown in Nexus format in Supplementary Figures 12 and 

13. MEGA5 65 was used to select the general time-reversible model with a gamma-

distributed rate parameter (GTR+G66) as the best mathematical model for building a 

maximum-likelihood tree from the CAP256-VRC26 lineage sequences. FASTML67 was 

then used to estimate the gamma parameter and build separate maximum likelihood trees for 

heavy and light chain sequences (including the isolated antibodies) and these were rooted on 

the germline V gene sequences. Two branches of the light chain tree were manually moved 

to match their positioning in the heavy chain tree based on the evidence from trees 

constructed solely with the 12 isolated antibodies. Analysis with DNAML from PHYLIP 

(Phylogeny Inference Package) version 3.6 (Felsenstein, J. 2005. PHYLIP (Phylogeny 

Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, 

University of Washington, Seattle) (http://cmgm.stanford.edu/phylip/dnaml.html) showed 

that these rearrangements did not significantly alter the log-likelihood score of the tree.

To create a condensed version of the heavy chain phylogenetic tree (Fig. 4c), CDR H3 

sequences were clustered using a 95% sequence identity threshold and requiring that all 

CDR H3s in a cluster have the same length. Isolated antibodies and monophyletic clusters 

with at least five members were represented by a single leaf, while all other sequences were 

removed from the tree. In cases were an internal node was deleted, branch lengths above and 

below that node were summed, so that the tree depths of all remaining sequences were 

maintained.

UCA and inferred intermediates

The phylogenetic trees of all heavy and all light chain lineage members calculated above 

(Fig. 3c and Extended Data Fig. 1) were input into the DNAML maximum likelihood 

software package to infer ancestral sequences. These are a direct consequence of the input 

sequences and the mathematical model used to build the trees; the gamma distribution found 

by FASTML above was used and the topology of the tree was held fixed, so no further 

information was added. The calculated heavy chain UCA was identical to the germline 

VH3-30*18 allele. Although the VH3-30*03 allele is only one nucleotide different from 

*18, germline sequencing of this donor showed that she carries the *18 allele and not the 

*03 allele (Cathrine Mitchell, personal communication). The inferred UCA is very similar to 

low-divergence sequences found in the week 38 data set (Extended Data Fig 6).
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To test intermediates in the development of CAP256-VRC26.01, two internal nodes were 

chosen from the phylogenetic trees to be approximately equally spaced in terms of 

evolutionary distance and the inferred sequences were retrieved using DNAML. Successful 

complementation of inferred heavy and light chains for each intermediate suggests that the 

lineage is well sampled by the 454 data and that the calculated phylogenetic trees 

successfully capture the coupled evolutionary dynamics of heavy and light chains.

Logograms for CDRH3s were made with Weblogo 68.

Protein Crystallization

VRC26.UCA Fab was prepared by digesting purified IgG with Lys-C at 37°C for 2 hours. 

The reaction was then quenched by the addition of cOmplete protease inhibitors (Roche). 

For VRC26.01, VRC26.03, VRC26.04, VRC26.06, VRC26.07 and VRC26.10 Fab 

preparation, an HRV3C recognition site (GLEVLFQGP) was inserted after Lys_235 and 

purified IgG was incubated with HRV3C protease overnight at 4 °C. For all, the digested 

antibodies were passed over Protein A agarose to remove the Fc fragment. The Fab was 

further purified over a Superdex 200 gel filtration column and concentrated aliquots were 

stored at −80°C. All Fabs were screened against 576 crystallization conditions using a 

Cartesian Honeybee crystallization robot. Initial crystals were grown by the vapor diffusion 

method in sitting drops at 20°C by mixing 0.2 μl of protein complex with 0.2 μl of reservoir 

solution. Crystals were manually reproduced in hanging drops by mixing 1.0 μl protein 

complex with 1.0 μl reservoir solution. VRC26-UCA was crystallized with a reservoir 

solution of 27% PEG 8000 and 0.1M Hepes pH 7.5 and was flash frozen in liquid nitrogen 

with 20% PEG 400 as a cryoprotectant. VRC26.01 was crystallized with a reservoir solution 

of 32% PEG 400, 4% PEG 3350 and 0.1M Na Acetate pH 5.5 and was flash frozen in liquid 

nitrogen with 20% ethylene glycol as a cryoprotectant. VRC26.03 was crystallized with a 

reservoir solution of 22% PEG 8000, 5% MPD and 0.1M imidazole pH 6.5 and was flash 

frozen in liquid nitrogen with 20% xylitol as a cryoprotectant. VRC26.04 was crystallized 

with a reservoir solution of 14% PEG 3350, 25% ispropanol and 0.1M Tris pH 8.5 and was 

flash frozen in liquid nitrogen with 20% ethylene glycol as a cryoprotectant. VRC26.06 was 

crystallized with a reservoir solution of 3M Na formate and 0.1M Tris pH 7.5 and was flash 

frozen in liquid nitrogen with 20% xylitol as a cryoprotectant. VRC26.07 was crystallized 

with a reservoir solution of 4% PEG 8000, 0.1M Zn acetate and 0.1M MES pH 6 and was 

flash frozen in liquid nitrogen with 20% glycerol as a cryoprotectant. VRC26.10 was 

crystallized with a reservoir solution of 22% PEG 4000, 0.4M Na Acetate and 0.1 M Tris pH 

7.5 and was flash frozen in liquid nitrogen with no cryoprotectant.

Data for all crystals were collected at a wavelength of 1.00 Å at SER-CAT beamlines ID-22 

and BM-22 (Advanced Photon Source, Argonne National Laboratory). All diffraction data 

were processed with the HKL2000 suite 69 and model building and refinement were 

performed in COOT 70 and PHENIX 71, respectively. For VRC26.03 Fab data, a molecular 

replacement solution consisting of one Fab molecule per asymmetric unit was obtained 

using PHASER with a search model from PDB ID 3F12. VRC26.03 then served as a search 

model for all remaining VRC26 Fabs. Throughout the refinement processes, a cross 

validation (Rfree) test set consisting of 5% of the data was used and hydrogen atoms were 
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included in the refinement model. Structure validations were performed periodically during 

the model building/refinement process with MolProbity 72. All graphical representations 

with protein crystal structures were made with Pymol 73.

Structure modeling on trimers

Defined locations of the V1V2, V3-glycan and CD4-binding sites were mapped directly 

onto EM density of the unliganded HIV-1 BAL spike (EMD-5019)50 using the software 

package UCSF Chimera 74. The CD4-binding site was defined by aligning density of the 

VRC01-bound BAL spike (EMD-5457)75 with the unliganded map and fitting a crystal 

structure of VRC01-bound gp120 (PDB id 3NGB)76 to the density. EM density in close 

proximity to the Fab structure was colored to highlight the region of contact. The same 

procedure was used to define the V3-glycan region using a PGT128-bound trimer 

(EMD-1970) and crystal structure (PDB id 3TYG)77 and the V1V2 region using the PG9-

bound BG505 SOSIP trimer (EMD-2241) 24 and a crystal structure of V1V2-bound PG9 

(PDB id 3U4E) 22. The fit of the PG9-V1V2 crystal structure to the SOSIP trimer was used 

to model the trimeric orientation of V1V2 using the 3-fold symmetry of the HIV-1 spike. 

The BG505.664 SOSIP crystal structure33 was presented to highlight the quaternary location 

of V1V2 point mutations. Side chains of residues 166 and 167, not seen in the crystal 

structure were modeled. The Man5 glycan at N160, also not seen in the crystal structure, is 

represented as in the crystal structure of the PG9-V1V2 complex (PDB id 3U4E).

Loop modeling

Two intermediates were calculated at approximately equal maturation distance along the 

VRC26-UCA to VRC26.01 pathway. Mutations associated with the intermediates were 

mapped directly onto the structure of VRC26.01. 14 of the 35 residues in the VRC26.01 

structure are disordered and were modeled with Loopy 78 (http://wiki.c2b2.columbia.edu/

honiglab_public/index.php/Software:Loopy) and represented as grey dots. Mutations of the 

intermediates were colored according to approximate time of occurrence based on the 

longitudinal phylogenetic tree highlighting the timeline of the structural development. 

These, and the other antibodies with modeled loops (Fig. 4), were modeled in a single loop 

prediction involving four steps. In the first step, Loopy was used to predict 10 loop 

conformations. The number of initial loop conformations to be sampled was set to 50,000 

(and the not the default value of 2,000). In the second step all 10 loop conformations were 

refined using the Protein Preparation Wizard in Maestro (http://www.schrodinger.com/). In 

the third step, sulfate groups were added to tyrosine at position 100 of the heavy chain and 

the entire structure was then subjected to all-atom energy minimization in Maestro. A fourth 

and final step was needed to ensure a reasonable sampling of the rotameric states for the 

sulfated tyrosines. The Rapid Torsion Scan module in Maestro was used to sample the chi 

angle involving the sulfate moiety in steps of 20 degrees. The model with the lowest energy 

after application of the Rapid Torsion Scan module was considered as the best prediction.

Tyrosine sulfation predictions were carried out in GPS-TPS (Z. Pan et al, http://

tsp.biocuckoo.org).
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Single Genome Amplification, Sequencing and Cloning

HIV-1 RNA was isolated from plasma using the Qiagen QIAamp Viral RNA kit, and 

reverse transcribed to cDNA using SuperScript III Reverse Transcriptase (Invitrogen, CA). 

The envelope genes were amplified from single genome templates 49 and amplicons were 

directly sequenced using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready 

Reaction kit (Applied Biosystems, Foster City, CA) and resolved on an ABI 3100 automated 

genetic analyzer. The full-length env sequences were assembled and edited using 

Sequencher v.4.5 software (Genecodes, Ann Arbor, MI). Multiple sequence alignments were 

performed using Clustal X (ver. 1.83) and edited with BioEdit (ver. 7.0.9) Sequence 

alignments were visualized using Highlighter for Amino Acid Sequences v1.1.0 (beta).

For analysis of selection pressure, and to account for recombination between the SU and PI, 

sequences were partitioned into two alignments (an SU-related, and a PI-related alignment) 

based on the inferred recombination breakpoints using an in-house script. Breakpoints were 

identified by a shift in identity from one reference towards the other, and required at least 

two sequential polymorphisms in common with a corresponding PI/SU-related virus in order 

to be considered. Phylogenies for both alignments were then reconstructed using FastTree79 

with a GTR+CAT model, and rooted on the PI/SU. Signals of selective pressure were 

detected with MEME (episodic diversifying selection)80 and DEPS (directional selection)81 

using the FastTree-generated trees, implemented in Hyphy 82.

The frequencies of specific amino acids at a site and the distribution of net charges in the V2 

epitope were calculated from the 2012 filtered web alignment (N=3990) from the Los 

Alamos HIV database (http://www.hiv.lanl.gov/).

Selected envelope amplicons were cloned into the expression vector pcDNA 3.1 

(directional) (Invitrogen) by re-amplification of SGA first-round products using Pfu Ultra II 

enzyme (Stratagene) with the EnvM primer, 5′-TAG CCC TTC CAG TCC CCC CTT TTC 

TTT TA-3′ 83 and directional primer, EnvAstop, 5′-CAC CGG CTT AGG CAT CTC CTA 

TGG CAG GAA GAA-3′ 48. Cloned env genes were sequenced to confirm that they exactly 

matched the sequenced amplicon. Autologous clones were mutated at key residues within 

the C-strand using the Stratagene QuickChange II kit (Stratagene) as described by the 

manufacturer. Mutations were confirmed by sequencing. Envelope clones were used to 

generate single round of replication Env-pseudoviruses as described above.
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Extended Data

Extended Data Figure 1. Sequences of CAP256-VRC26 heavy and light chains
Sequences of the 12 B-cell culture derived antibodies, inferred germline V and J genes, and 

inferred intermediates are compared to the predicted UCA. a, heavy chain. b, lambda light 

chain.
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Extended Data Figure 2. Neutralization breadth and potency of CAP256-VRC26 antibodies
a, Neutralization of autologous (CAP256 PI and SU) and 47 heterologous viruses by 

CAP256-VRC26 antibodies. Neutralization was measured using a TZM-bl assay with Env-

pseudoviruses. Geometric mean was calculated for values <50 mg/ml. b, Breadth-potency 

curves. Neutralization of a 194-virus panel was measured for VRC26.08, PG9, PGT145, and 

CH01. The curves show the percent of viruses neutralized at any given IC50.
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Extended Data Figure 3. CAP256-VRC26 antibodies recognize a quaternary epitope
a, All 12 CAP256-VRC26 mAbs were tested by ELISA against gp120 from ZM53 and 

CAP210. Positive control antibody PG9 bound to both gp120s (not shown). b, 23 proteins 

and scaffolded V1V2 constructs were tested by ELISA for binding of CAP256-VRC26.03 

and CAP256-VRC26.08. PG9 bound to several of these (not shown). Similar data were 

observed for CAP256-VRC26.06, .07 and .09. c, Binding of CAP256-VRC26.03 and 

CAP256-VRC26.08 to virus-like particles (VLP). VLP expressing ZM53, ZM53.K169E, 

CAP210, or no Env were concentrated by pelleting and used to coat ELISA plates; assays 

were performed without detergent to preserve the trimer spikes. Similar data were observed 

for CAP256-VRC26.06, .07 and .09.
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Extended Data Figure 4. Visualization of CAP256-VRC26.09 bound to Env trimers by negative-
stain electron microscopy
a, Raw micrograph and corresponding reference free 2D class averages of VRC26.09 in 

complex with cleaved soluble BG505 SOSIP.664 gp140 trimers. b, Projection matching of 

3D model refinement and FSC curve used to calculate resolution. Resolution, 28 Å at 

FSC=0.5. c, 3D reconstruction of VRC26.09:BG505 SOSIP.664 complex (green surface) 

alone and overlayed with PG9:SOSIP (purple mesh). The reconstructions are nearly 

identical in the trimer portion while displaying small differences in the Fab angles.
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Extended Data Figure 5. Effects of V2 mutations on neutralization activity of CAP256-VRC26 
antibodies
a, Each panel shows neutralization of wild-type and N160 glycan mutant CAP210.E8, 

ConC, KER2018.11, and ZM53.12 viruses. CAP256-VRC26 mAbs are partially and 

variably affected by loss of N160 glycan, in a virus-strain specific manner. In contrast, PG9-

class antibodies PG9, PGT142, and CH01 are uniformly knocked out by N160 mutation. b, 

CAP256-VRC26 mAbs are partially and variably affected by changes in V2 glycans. 

Neutralization by each antibody was measured against wild-type ZM32.12, mutants N156A 

and N160K, and ZM53.12 grown in the presence of kifunensine, an inhibitor of glycan 
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processing. In contrast to CAP256-VRC26 antibodies, PG9 activity is knocked out by the 

mutations and by kifunensine. c, HIV-6405 wild type is resistant to PG9 and CAP256-

VRC26 antibodies, while a PG9-sensitive mutant34 is also sensitive to CAP256-VRC26 

antibodies. d, Sequences of wild type and mutant HIV-6405.

Extended Data Figure 6. Origins of long CDRH3s in donor CAP256
a, Week 38 sequences from 454 that support the calculation of the UCA. Unique amino acid 

sequences with 2–5 residue changes in the CDR H3 are compared to the calculated UCA 

sequence. Each contained fewer than 3 combined nucleotide mutations in VH and JH. 

Parentheses, number of corresponding reads in the raw 454 data. b, c, Lack of autoreactivity. 

b, ELISA for binding to cardiolipin. 4E10 was strongly positive, CAP256-VRC26.03 was 

weakly positive, and the other 11 CAP256-VRC26 mAbs and the UCA were negative along 

with control antibody VRC01. c, Staining on Hep2 cells was assessed at 50 and 25 mg/ml. 

Only the positive control, mAb 4E10, showed positive staining. d, Distribution of CDRH3 
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lengths among 454 sequencing reads of B cell transcripts. The percentage of high-quality 

NGS reads that have CDR H3≥24 or ≥28 are shown for three HIV-1 uninfected donors 

(solid circles on both right and left plots) and for donor CAP256 (week 176) amplified with 

all-VH primers donor, and CAP256 (week 30) amplified with VH3 primers. High-quality 

reads are defined as successful V and J assignments and a continuous open reading frame. 

CDRH3 lengths use the IMGT definitions.

Extended Data Figure 7. Loss of flexibility at the base of the CDR H3
a, Top, logograms of CDR H3 sequences extracted from the heavy chain phylogenetic tree 

from weeks 59 and 119. The height of each letter is proportional its frequency in the 

population. Sequences that lack a disulfide bond contain a highly conserved glycine at the 

Doria-Rose et al. Page 22

Nature. Author manuscript; available in PMC 2015 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3rd position of the CDR H3 (residue 97, Kabat definition). The appearance of the two 

cysteines that form the disulfide bond coincides with a glycine to arginine mutation at this 

site. (Bottom) Overlay and close-up of crystal structures from Supplementary Figure 6A. 

Loss of the glycine limits flexibility at the base of the CDR H3 and is shown in the crystal 

structures to be the initial site of divergence in the CDR H3 loops between the antibodies 

without the disulfide bond (UCA and CAP256-VRC26.01) and those with it (CAP256-

VRC26.03, .04, .06, .07, .10). This mutation may contribute to the conserved trajectory of 

the CDR H3 protrusion towards the heavy chain that is seen in the more mature antibody 

structures. b, CDRH3 and flanking sequences for VRC26.01, VRC26.03, and a mutant 

VRC26.03 in which the conserved cysteines are changed to the corresponding amino acids 

found in VRC26.01. c, neutralization activity of VRC26.03 and the mutant shown in panel 

b. The mutant shows reduced activity against CAP256 SU and complete loss of 

heterologous activity.
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Extended Data Figure 8. Viral polymorphisms and escape mutations
a, Frequency of CAP256 PI and SU polymorphisms at positions 160-162 (glycosylation 

sequon), 165, and 169. Colored slices on pie charts and percentages indicate prevalence of 

these polymorphisms within global circulating viruses in the Los Alamos Sequence 

Database (n=3,990). b, Distribution of net charge of the V2 epitope, defined as residues 160 

– 171, within global circulating viruses (n=3,990). The charge of the PI, SU and 176 week 

clones are indicated. c, CAP256-VRC26 mAb neutralization of the SU and PI viruses, and 

of the SU virus mutated to contain PI polymorphisms 162I, 165V or 169Q. d, CAP256-

VRC26 mAb neutralization of the SU virus mutated to contain known CAP256 escape 

mutations in the V2 epitope. e. CAP256-VRC26 mAb neutralization of 34 week clone 

(designated wildtype, wt) with an SU-like V1V2, compared to the I169K back mutant. (c–e) 
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The V2 epitope sequence, with mutated residues in red is shown on the left, IC50 values in 

the middle, and the time point when mutations were first detected in Env sequences on the 

right (weeks post-infection).

Extended Data Figure 9. Longitudinal changes in CAP256 V1V2
a, Variation in the V1V2 sequence of six Env clones. Amino acid mutations from residues 

160-171 are highlighted and corresponding changes in neutralization for the six Env clones 

by CAP256-VRC26.01-.12 and the UCA are shown. The charge of the displayed sequences 

that make up the central region of the trimer are shown on the right. b, Residue changes 
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highlighted in a were mapped onto the V1V2 domain in the crystal structure of the HIV-1 

BG505.664 SOSIP Env trimer. The structure is viewed looking towards the viral membrane 

along the trimer axis. Mutations are colored as in panel a and represented as spheres (amino 

acids) or stick and surface (glycan). c, Electrostatic surface representations of (top row) the 

full V1V2 region for each Env clone, (bottom row) Fabs. Timeline of infection is shown in 

the middle. V1V2 sequences were modeled with SWISS-MODEL using the BG505.664 

SOSIP as a template. Escape mutations R166S, K171N, and K169E resulted in a net charge 

change in the V2 epitope from +3 (SU) to a rare 0. Antibody CDR H3s became less 

negatively charged over time, suggesting co-evolution of the viral epitope and the antibody 

paratope.

Extended Data Table 1

Genetic characteristics of CAP256-VRC26 antibodies and V1V2-directed broadly 

neutralizing antibodies from other donors.

Data are from the present study and from references (Walker 2009, Walker 2011, 

Bonsignori2011JVI). CAP256-VRC26.01-12 are derived from B cell culture, while 

CAP256.VRC26-I1 and –I2 (in italics) are inferred intermediates. CDRH3 lengths use Kabat 

notation. a, nucleotides. b, amino acids.

a

Donor Antibody VH gene VL gene

% Divergence, Nucleotide

from VH from VL from UCA-H from UCA-H CDRH3

CAP256

VRC26-I1

IGHV3-30*18 IGLV1-51*02

2% 4% 3% 8%

VRC26-I2 6% 7% 7% 13%

VRC26.01 8% 4% 11% 18%

VRC26.02 9% 5% 13% 27%

VRC26.03 9% 7% 13% 28%

VRC26.04 9% 8% 13% 28%

VRC26.05 10% 5% 13% 24%

VRC26.06 11% 7% 16% 30%

VRC26.07 12% 8% 14% 26%

VRC26.08 12% 10% 17% 33%

VRC26.09 14% 10% 19% 34%

VRC26.10 12% 4% 15% 26%

VRC26.11 12% 14% 18% 32%

VRC26.12 15% 8% 18% 27%

IAVI24
PG9

IGHV3-33*05 IGLV2-14*01
12% 8%

PG16 15% 12%

CH0219

CH01

IGHV3-20*01 IGKV3-20*01

16% 11%

CH02 15% 14%

CH03 14% 11%

CH04 14% 11%

IAVI84 PGT141 IGHV1-8*01 IGKV2-28*01 16% 13%
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a

Donor Antibody VH gene VL gene

% Divergence, Nucleotide

from VH from VL from UCA-H from UCA-H CDRH3

PGT142 16% 13%

PGT143 16% 13%

PGT144 17% 12%

PGT145 17% 17%

b

Donor Antibody VH gene VL gene CDRH3 Length

% Divergence, Amino Acid

from VH from VL from UCA-H from UCA-H CDRH3

CAP256

VRC26-I1

IGHV3-30*18 IGLV1-51*02

35 6% 5% 8% 20%

VRC26-I2 35 11% 7% 13% 29%

VRC26.01 35 16% 7% 18% 40%

VRC26.02 35 16% 7% 27% 46%

VRC26.03 35 14% 9% 28% 46%

VRC26.04 35 14% 8% 28% 46%

VRC26.05 35 20% 8% 24% 40%

VRC26.06 36 18% 9% 30% 44%

VRC26.07 35 18% 9% 26% 46%

VRC26.08 37 16% 9% 33% 51%

VRC26.09 37 21% 7% 34% 54%

VRC26.10 35 17% 5% 26% 46%

VRC26.11 35 23% 23% 32% 49%

VRC26.12 35 22% 14% 27% 43%

IAVI24
PG9

IGHV3-33*05 IGLV2-14*01
28 20% 15%

PG16 28 21% 21%

CH0219

CH01

IGHV3-20*01 IGKV3-20*01

24 29% 17%

CH02 24 22% 23%

CH03 24 22% 19%

CH04 24 23% 17%

IAVI84

PGT141

IGHV1-8*01 IGKV2-28*01

32 28% 21%

PGT142 32 30% 21%

PGT143 32 28% 22%

PGT144 32 31% 23%

PGT145 31 30% 26%

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Development of broad neutralization by donor CAP256 and isolation of neutralizing 
antibodies
(a) Timing of antibody isolation in relation to plasma neutralization titers against the 

primary infecting virus (PI), the superinfecting virus (SU), and a panel of 40 heterologous 

viruses (geometric mean titer shown). Percentage breadth (gray area), % of viruses 

neutralized with plasma ID50 >45. (b) Genetic characteristics and neutralization breadth and 

potency of the 12 isolated antibodies. Week of antibody isolation and V-gene mutation rates 

are indicated. Residues flanking the Kabat-defined CDR H3 sequences are shown in gray. 

Neutralization was assessed against a panel of 47 heterologous viruses. (c) Breadth and 

potency of antibody CAP256-VRC26.08 on a panel of 194 Env-pseudoviruses. Dendrogram 

shows phylogenetic relatedness of Env sequences in the panel.
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Figure 2. Mapping of CAP256-VRC26 epitope on the HIV-1 Env spike
(a) Left, correlations between neutralization fingerprints (see detailed methods) of CAP256-

VRC26 antibodies and CAP256 plasma. Darker gray indicates stronger correlation. Right, 

correlations between neutralization fingerprints of CAP256-VRC26 antibodies and 

representative antibodies targeting the major HIV-1 neutralization epitopes. Correlations are 

color-coded by antibody; darker shades indicate stronger correlations. (b) Competition 

assay. Binding to ZM53-Env-expressing 293T cells by labeled CAP256-VRC26.08 and 

unlabeled competitor antibodies measured by flow cytometry. Assay shown is representative 

of three experiments. (c) Left, negative stain electron microscopy (EM) 3D reconstruction of 

CAP256-VRC26.09 Fab in complex with soluble cleaved BG505 SOSIP.664 trimer; right, 

2D-class averages of VRC26.09 and PG9 in complex with BG505 SOSIP.664 trimer. (d) 

Neutralization of Env-pseudoviruses with HIV-ConC and V2 point mutants. Sequence 

shows amino acids 160-175. (e) Location of HIV-1 epitopes. Left, EM density of viral 

spike50, with viral membrane at top and major sites of vulnerability shown as determined by 

structural mapping of antibody interactions24. The gp41 membrane proximal external region 

(MPER) is shown schematically. Right, model of V1V2 based on EM reconstruction of PG9 

with BG505 SOSIP.664 trimer24,32, viewed looking towards the viral membrane along the 
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trimer axis. Green ribbon, strand C. V2 mutations from panel d are shown with surface 

representation; brighter green indicates more potent effects on neutralization.

Doria-Rose et al. Page 35

Nature. Author manuscript; available in PMC 2015 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Maturation of the CAP256-VRC26 lineage revealed by NGS and VH:VL paired 
sequencing of B cell transcripts
(a) Timeline of longitudinal peripheral blood samples with quantification of total NGS 

sequence reads (total), and CAP256-VRC26 lineage-related reads (total and unique). Arrows 

below the line indicate time points of 454 pyrosequencing for heavy and light chain 

sequences. Circles indicate time points of paired sequencing of sorted B cells (see detailed 

methods). PCR amplifications for pyrosequencing used primers specific for VH3 family 

sequences (heavy chain) and V lambda sequences (light chain), with the exception of the 

week 176 sample (asterisk), which was amplified using all-VH gene primers, resulting in 

fewer CAP256-VRC26 specific reads. (b) Maturation time course for CAP256-VRC26.01 

(top panels) and CAP256-VRC26.08 (bottom panels). Heat map plots show sequence 

identity (vertical axis) versus germline divergence (horizontal axis) for NGS data. The 12 

isolated antibodies are displayed as red ‘x’s for reference, with the exception of the 

CAP256-VRC26.01 and 08 antibodies which are shown as black dots. Numbers between the 
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top and bottom panels correspond to the number of raw reads with at least 85% identity to 

the indicated antibody (top: VRC26.01, bottom: VRC26.08). (c) Phylogenetic trees of the 

CAP256-VRC26 clonal lineage for heavy chain (left) and light chain (right) were 

constructed by maximum likelihood using the 454 sequences and the isolated antibodies 

(black dots, labeled with antibody name). Branches are colored by time point when NGS 

sequences were first detected. The orange and blue circles indicate linked heavy and light 

chain sequences from the paired sequencing data. Scale, rate of nucleotide change (per site) 

between nodes.
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Figure 4. Structural characteristics of the developing CAP256-VRC26 lineage
(a) Crystal structure of the antigen-binding fragment (Fab) of CAP256-VRC26.03 shown in 

ribbon diagram representation. (b) Left, the intra-loop disulfide bond and tyrosine sulfation 

are shown in stick representation, and enlarged to show electron density (blue mesh, 2Fo-Fc 

at 1σ). Right, molecular surface, with electrostatic potentials colored red for acidic and blue 

for basic. CDR H3 regions of broadly neutralizing V1V2-directed antibodies are shown for 

comparison, with the left image in ribbon representation (tyrosine sulfates highlighted) and 

the right image in electrostatic representation. (c) Left, a condensed heavy chain 

phylogenetic tree highlights the isolated antibodies. Scale, rate of nucleotide change between 

nodes. The number of mutations to the heavy chain (H) and light chain (L) relative to the 

UCA are shown. Middle, structures of the variable regions. Mutations from the UCA are 

represented as spheres colored according to the week of antibody isolation at which the 

mutations first appear. Right, CDR H3 details. Residues that are (or evolve to become) 
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cysteines are labeled (gray dashes indicate modeled disordered regions). The position of 

tyrosines predicted to be sulfated (scores >1) are noted and were included in the formal 

charges shown for each CDR H3 and the electrostatic representations (far right).
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Figure 5. HIV-1 Env evolution and the development of the CAP256-VRC26 lineage
(a) V1V2 sequences are shown in highlighter format with the primary infecting virus (PI) 

designated as master and V2 residues 160 to 171 boxed. Asterisk at week 15 denotes 

sequences amplified with strain-specific primers matching the SU virus. (b) Logogram of 

the V2 epitope for all CAP256 sequences, with mutations away from the PI (master 

sequence) in color. (c) SU-like V1V2 sequences are indicated by black (present) and grey 

(absent) boxes. Escape mutations (K169E or R166S/K) are indicated by brown boxes. The 

net charge of the V2 epitope (residues 160 to 171) is shown in purple/white, ranging from 

+3 to 0. White lines separate clones within a time point; black lines separate time points. (d) 

Neutralization by the 12 CAP256-VRC26 mAbs of representative longitudinal Env clones 

isolated between 6 and 176 weeks post infection (weeks shown at far right). The CAP256 

mAbs are colored by time of isolation (as in Fig. 1). The development of the CAP256-

VRC26 antibody lineage, V1V2-directed plasma neutralizing antibodies, and plasma 

heterologous neutralization, are indicated on the right.
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Figure 6. Development from UCA to CAP256-VRC26.01
(a) Expanded view of the phylogenetic trees from Fig. 3c, highlighting the maturation 

pathway of CAP256-VRC26.01. Off-pathway branches were collapsed and are shown as 

dashed lines. Inferred intermediates VRC26-I1 and VRC26-I2 were expressed for functional 

analyses. (b–e) Binding and neutralization of antibodies UCA, VRC26-I1, VRC26-I2, 

VRC26.01. (b, d), Binding to cell-surface expressed Env (SU and ZM53). MFI, median 

fluorescence intensity. (c, e) Neutralization of (c) PI, SU and point mutants, and (e) seven 

heterologous viruses. Bars, standard error of the mean (triplicates). (f) Structural models of 

VRC26.01 lineage antibodies. Affinity matured residues are shown as spheres colored 

according to the intermediate at which they first appear: red, VRC26-I1; orange, VRC26-I2; 

green, VRC26.01. Grey dots, disordered residues in the CDR H3. The number of changes 
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from the UCA to each intermediate are noted for V gene only (VH or VL), or from the full 

UCA (UCA-HC or UCA-LC).
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