4 research outputs found
Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms
In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0–100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19−; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19− groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: −82.5 ± 27.2 points; C19−: −59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0–10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.info:eu-repo/semantics/acceptedVersio
Corrigendum to: More Than Smell-COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis.
This is a correction notice for article bjaa041 (DOI: https://doi.org/10.1093/chemse/bjaa041), published 20 June 2020. An incorrect version of the caption to Figure 5 was mistakenly included in the published paper. An updated version is given below. Neither the data nor the paper’s conclusions were affected by this correction. The authors sincerely apologize for the error
Corrigendum to::More Than Smell-COVID-19 Is Associated with Severe Impairment of Smell, Taste, and Chemesthesis (Chemical Senses (2020) DOI: 10.1093/chemse/bjaa041)
This is a correction notice for article bjaa041 (DOI: https:// doi.org/10.1093/chemse/bjaa041), published 20 June 2020. An incorrect version of the caption to Figure 5 was mistakenly included in the published paper. An updated version is given below. Neither the data nor the paper's conclusions were affected by this correction. The authors sincerely apologize for the error. (A) Correlations between the 3 principal components with respect to changes in 3 chemosensory modalities (i.e., taste, smell, and chemesthesis). Shades of gray indicate positive correlation, whereas shades of red indicate negative correlations. White denotes no correlation. (B) Clusters of participants identified by k-means clustering. The scatterplot shows each participant's loading on dimension 1 (degree of smell and taste loss, PC1 on x-Axis) and dimension 2 (degree of chemesthesis loss, PC2 on y-Axis). Based on the centroid of each cluster, participants in cluster 1 (blue, N = 1767; top left) are generally characterized by significant smell, taste and chemesthesis loss. Participants in cluster 2 (orange, N = 1724; bottom center) are generally characterized by ratings that reflect smell/taste loss with preserved chemesthesis. Loadings for participants in cluster 3 (green, N = 548; right side) are generally characterized by reduced smell and taste loss, and preserved chemesthesis
The best COVID-19 predictor is recent smell loss: a cross-sectional study
Background: COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19. Methods: This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery. Results: Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing no significant model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ~50% of participants and was best predicted by time since illness onset. Conclusions: As smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (10<OR<4), especially when viral lab tests are impractical or unavailable